Question

We want to design a non-resetting sequence detector using a finite state machine (FSM) with one...

We want to design a non-resetting sequence detector using a finite state machine (FSM) with one input X and one output Y. The FSM asserts its output Y when it recognizes the following input bit sequence: "1101". The machine will keep checking for the proper bit sequence and does not reset to the initial state after it has recognized the string. [Note: As an example the input string X= "..1101101.." will cause the output to go high twice: Y = "..0001001.."]

a) Capture the Moore FSM.

b) Create the state tab

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using Moore machine approach design a sequence detector with one input and one output. When input...
Using Moore machine approach design a sequence detector with one input and one output. When input sequence 010 occurs the output becomes 1 and remains 1 until the sequence 010 occurs again in which case the output returns to 0. The output remains 0 until, 010 occurs the third time, and so on. Your design should be able to handle overlapping sequences, i.e., input sequence 11001010100 should produce the output 00000110011. Draw the state diagram and implement your detector using...
design a serial binary pattern detector with a Moore FSM. serial input w send a new...
design a serial binary pattern detector with a Moore FSM. serial input w send a new bit every clock cycle. it shoud output a high value for output z if it detects either 1001 or 1110. it shouldn't reset after reading 4 bits. ex) input 111001 create the output 00001001 a) state transition diagram b) state transition table c) output table d) equations for output / next state
Design a Sequence Recognizer that will recognize the sequence 101101 by designing a finite state machine...
Design a Sequence Recognizer that will recognize the sequence 101101 by designing a finite state machine (FSM). The input will be (X) and when the pattern is seen the output (Z) will be 1. Example: X = 1 0 1 0 1 1 0 1 1 0 1 1 Z = 0 0 0 0 0 0 0 0 1 0 0 1 a. Make a state diagram for the process using the Moore Machine model b. Make a next...
Design a Sequence Recognizer that will recognize the sequence 101101 by designing a finite state machine...
Design a Sequence Recognizer that will recognize the sequence 101101 by designing a finite state machine (FSM). The input will be (X) and when the pattern is seen the output (Z) will be 1. Example: X = 1 0 1 0 1 1 0 1 1 0 1 1 Z = 0 0 0 0 0 0 0 0 1 0 0 1 a. Make a state diagram for the process using the Moore Machine model b. Make a next...
Without using Verilog, use D-type flip-flops and combinational logic to design a synchronous Moore finite-state machine...
Without using Verilog, use D-type flip-flops and combinational logic to design a synchronous Moore finite-state machine that monitors input A and asserts a binary output B if the sequence 101 is observed. For example: A=010101101 B=000101001 ---------------- time a) Draw the state transition graph b) Draw the encoded next state/output table c) Determine the minimal circuit realization of the next state logic and output d) Draw the circuit e) Draw a timing diagram using the input sequence above showing the...
Design a Mealy finite state machine that detects the bit sequence x=[111010]. Draw Mealy state diagram...
Design a Mealy finite state machine that detects the bit sequence x=[111010]. Draw Mealy state diagram Write state table Implement circuit with flip flop type of your choice
Design a FSM for a Vending Machine In this task, you will design a FSM for...
Design a FSM for a Vending Machine In this task, you will design a FSM for a simple (albeit strange) vending machine of office supplies. The vending machine sells three possible items, each at a different cost: Item Cost Pencil 10 cents Eraser 20 cents Pen 30 cents The vending machines accepts nickels (worth 5 cents), dimes (worth 10 cents), and quarters (worth 25 cents). Physically, it is only possible to insert a single coin at a time. The vending...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT