Question

(15) Smith receives $100 of income this period and $165 next period. His utility function is...

(15) Smith receives $100 of income this period and $165 next period. His utility function is given by U=X^α Y^(1-α), where X is consumption this period and Y is consumption next period. When the interest rate was 10%, his consumption was (C_1^*,C_2^*)=(100,165).
(7) Find the value of α.
(8) If the interest rises to 50%, what would be the optimal consumption bundle?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(15) Smith receives $100 of income this period and $165 next period. His utility function is...
(15) Smith receives $100 of income this period and $165 next period. His utility function is given by U=Xα Y1-α, where X is consumption this period and Y is consumption next period. When the interest rate was 10%, his consumption was (C1*, C2*)=(100, 165). 7) Find the value of α. (8) If the interest rises to 50%, what would be the optimal consumption bundle?
Consider the following utility function: U = X^2 + Y^2 If P x = 3 and...
Consider the following utility function: U = X^2 + Y^2 If P x = 3 and P y = 2.5, and the income is I= 50. Find the optimal consumption bundle.
Donna and Jim are two consumers purchasing strawberries and chocolate. Jim’s utility function is U(x,y) =...
Donna and Jim are two consumers purchasing strawberries and chocolate. Jim’s utility function is U(x,y) = xy and Donna’s utility function is U(x,y) = x2y where x is strawberries and y is chocolate. Jim’s marginal utility functions are MUX=y and MUy=x while Donna’s are MUX=2xy and MUy=x2. Jim’s income is $100, and Donna’s income is $150. What is the optimal bundle for Jim, and for Donna, when the price of strawberries rises to $3?
(15) A representative consumer’s utility is given by: U=min⁡(2X, Y). Income is 2400. The prices are:...
(15) A representative consumer’s utility is given by: U=min⁡(2X, Y). Income is 2400. The prices are: PX=2, PY=1. X is the consumption of gasoline and Y is the consumption of composite good. (3) Write the budget constraint. Compute the optimal consumption bundle. (4) Now the government imposes 100% tax on the consumption of gasoline. Write the new budget constraint. Compute the optimal consumption bundle. (4) Now, in addition to the tax in part (B), suppose that the government gives the...
(15) A representative consumer’s utility is given by: U=min⁡(2X, Y). Income is 2400. The prices are:...
(15) A representative consumer’s utility is given by: U=min⁡(2X, Y). Income is 2400. The prices are: PX=2, PY=1. X is the consumption of gasoline and Y is the consumption of composite good. (3) Write the budget constraint. Compute the optimal consumption bundle. (4) Now the government imposes 100% tax on the consumption of gasoline. Write the new budget constraint. Compute the optimal consumption bundle. (4) Now, in addition to the tax in part (B), suppose that the government gives the...
(15) A representative consumer’s utility is given by: U=min (2X,Y). Income is 2400. The prices are:...
(15) A representative consumer’s utility is given by: U=min (2X,Y). Income is 2400. The prices are: P_X=2,P_Y=1. X is the consumption of gasoline and Y is the consumption of composite good. (3) Write the budget constraint. Compute the optimal consumption bundle. (4) Now the government imposes 100% tax on the consumption of gasoline. Write the new budget constraint. Compute the optimal consumption bundle. (4) Now, in addition to the tax in part (B), suppose that the government gives the income...
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the...
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the quantities of each of the two goods consumed. A consumer faces prices for x of $2 and y of $1, and is currently consuming 10 units of good X and 30 units of good Y with all available income. What can we say about this consumption bundle? Group of answer choices a.The consumption bundle is not optimal; the consumer could increase their utility by...
Tom spends all his $100 weekly income on two goods, X and Y. His utility function...
Tom spends all his $100 weekly income on two goods, X and Y. His utility function is given by U(X,Y) =XY. If Px=4 and Py=10 a) how much of each good should the buy? Please show graphically (specify clearly x-axis and y-axis and intercepts of each axis) b) Same as Problem 1, except now Tom’s utility function is given by U(X,Y) = X^1/2 Y^1/2 c) Find the MRS at the tangent points (optimal point) in a and b. Can you...
Suppose the utility function of an individual is U=X1/4 Y3/4 and income is I=4000. If price...
Suppose the utility function of an individual is U=X1/4 Y3/4 and income is I=4000. If price of X is Px=4 and price of Y is Py=1. The optimal consumption bundle for this individual is: a) X=50, Y=1000 b) X=150, Y=2000 c) X=250, Y=3000 d) X=350, Y=4000 e) None of above
Sophia’s utility function is as follows: U = 10x0.8 y0.6 Budget constraint: 100 = 6x +...
Sophia’s utility function is as follows: U = 10x0.8 y0.6 Budget constraint: 100 = 6x + 4y Solve for the utility-maximizing bundle Find the equation of the indifference curve that contains the utility-maximizing bundle. Sketch the solution, labeling all relevant items, x on the horizontal axis and y on the vertical axis. At the utility-maximizing bundle, what is the increase in Mustapha’s utility from the last dollar spent on good X? What about for good Y? Mustapha is moving to...