Question

A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0...

A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0 for the input 1 and x2≥0 for the input 2. The prices of input 1 and input 2 are given as w1>0 and w2>0, respectively. Answer the following questions.

  1. Which returns to scale does the production function exhibit?
  2. Derive the long-run conditional input demand functions and the long-run cost function.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a firm whose production technology can be represented by a production function of the form...
Consider a firm whose production technology can be represented by a production function of the form q = f(x1, x2) = x α 1 x 1−α 2 . Suppose that this firm is a price taker in both input markets, with the price of input one being w1 per unit and the price of input two being w2 per unit. 1. Does this production technology display increasing returns to scale, constant returns to scale, decreasing returns to scale, or variable...
Suppose the production function of a firm is given by f (x1; x2) = min{x1, x2}...
Suppose the production function of a firm is given by f (x1; x2) = min{x1, x2} (a) Calculate the conditional demand functions of the firm assuming w1 = 2; w2 = 4, and y = 8 (b) Calculate the minimum cost of the firm to produce 8 units of the good when w1 = 2 and w2 = 4:
A firm uses two inputs x1 and x2 to produce output y. The production function is...
A firm uses two inputs x1 and x2 to produce output y. The production function is f(x1, x2) = (x13/2+ x2)1/2. The price of input 1 is 1 and the price of input 2 is 2. The price of output is 10. (a) Calculate Marginal Products for each input. Are they increasing or decreasing? Calculate Marginal Rate of Technical Substitution. Is it increasing or diminishing? (b) Draw two or more isoquants. Does this production function exhibit increasing, decreasing or constant...
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the...
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the prices of inputs 1 and 2 are w1 and w2, respectively, and the market price of the product is p. (a) Find the levels of the inputs that maximize the profits of the firm (X1, X2) (b) Derive the supply function of the firm (i.e., y = f (x 1 ; x 2 ))
2 .Suppose the production function of a firm is given by f (x1, x2) = 2x1...
2 .Suppose the production function of a firm is given by f (x1, x2) = 2x1 + 4x2 (a) Calculate the conditional demand functions of the firm assuming w1 = 2; w2 = 3, and y = 8 (b) Calculate the minimum cost of the firm to produce 8 units of the good when w1 = 2 and w2 = 3
1. Consider a firm with technology that can be represented by the following production function: f(x1,...
1. Consider a firm with technology that can be represented by the following production function: f(x1, x2) = min {x1, x2} + x2 Input 1 costs w1 > 0 per unit and input 2 costs w2 > 0 per unit. (a) Draw the isoquant associated with an output of 4. Make sure to label any intercepts and slopes. (b) Find the firm’s long-run cost function, c(w1, w2, y)
Consider the technology of production f(K,L) = 0.3log(x) + 0.3log(y) a) Check whether the production function...
Consider the technology of production f(K,L) = 0.3log(x) + 0.3log(y) a) Check whether the production function exhibits constant, decreasing or increasing returns to scale. Explain b) Find the conditional demand functions. Use (p1, w1, w2) to denote the exogenous prices of output x1 and x2 respectively c) Find the cost function and verify Shephard's lemma d) Find the profit function
Let the input prices be w = (w1, w2) and output price be p. Derive the...
Let the input prices be w = (w1, w2) and output price be p. Derive the cost function c (w; y) and the output supply function y (w, p) for firms with the following production functions: a] f (x1; x2) = sqrt(x1) + 2sqrt(x2) b] f (x1; x2) = min [sqrt(x1), 2 sqrt(x2)]
Suppose that a firm’s production function is given by Φ(?1,?2)=?1?2. The firm incurs per-unit input costs...
Suppose that a firm’s production function is given by Φ(?1,?2)=?1?2. The firm incurs per-unit input costs of ?1 and ?2 when employing inputs ?1 and ?2, respectively. Derive the firm’s conditional input demand functions ?1?(∙) and ?2?(∙) and the firm’s total cost function ??(∙).
A firm produces a single output using two inputs x1, x2. Let p, w1, w2 be...
A firm produces a single output using two inputs x1, x2. Let p, w1, w2 be the prices. The production function f is C2 (twice continuously differentiable). Atp=5,w1 =1,w2 =2,theoptimalinputsarex∗1 =2,x∗2 =2. Ifεx1p =0.2 (the elasticity of x1 w.r.t. p), εx1w1 = −0.4 (the elasticity of x1 w.r.t. w1), and εx2 w2 = −0.5 (the elasticity of x2 w.r.t. w2 ), then, can you derive εx1 w2 , εx2 p and εx2w1? If so, please find them