Let the input prices be w = (w1, w2) and output price be p. Derive the cost function c (w; y) and the output supply function y (w, p) for firms with the following production functions:
a] f (x1; x2) = sqrt(x1) + 2sqrt(x2)
b] f (x1; x2) = min [sqrt(x1), 2 sqrt(x2)]
The given production function is y = x1^2 + 2x2^2 , the price of y is p , the input cost of x1 = w1 and x2 = w2
The profit maximization function = yp - x1w1 - x2w2
= sqrt(x1) + 2sqrt(x2) - x1w1 - x2w2
f(x1, x2) = x1^2 + 2x2^2 ,
(a) The cost function would be
C = ( w1 x1 + w2 x2 ) = ( w1 x1 + w2 x2 )
Derivating with respect to x1 and x2
sqrt(x1) + 2sqrt(x2) - x1w1 - x2w2
= 2x1 - w1 = 0 so w1 = 2x1
sqrt(x1) + 2sqrt(x2) - x1w1 - x2w2
= 4x1 -w2 , w2= 4x1 ,
so the ratio is 1/2 , 1 unit of x1 and 2 unit of x2.
(b)
The profit maximization function = yp - x1w1 - x2w2
= min [sqrt(x1), 2 sqrt(x2)] - x1w1 - x2w2
f(x1, x2) = min [sqrt(x1), 2 sqrt(x2)],
(a) The cost function would be
C = ( w1 x1 + w2 x2 ) = ( w1 x1 + w2 x2 )
Derivating with respect to x1 and x2
min [sqrt(x1), 2 sqrt(x2)] - x1w1 - x2w2
= minsqrt(x1) - w1 = 0
sqrt(x1) + 2sqrt(x2) - x1w1 - x2w2
= 2sqrt(x2) -w2 ,
Get Answers For Free
Most questions answered within 1 hours.