Question

Suppose the Utility function of the consumer is given by U = x + 5y^3 Suppose...

Suppose the Utility function of the consumer is given by

U = x + 5y^3

Suppose the price of x is given by p x and the price of y is given by p y and the budget income of the consumer is given by I. Price of x, Price of y and Income are always strictly positive. Assume interior solution.

a) Write the statement of the problem

b) Compute the parametric expressions of the equilibrium quantity of x & y purchased and the maximized utility. You can either use Lagrangian or the alternative to Lagrangian (i.e. tangency and the budget constraint).

c) Compute the slope of the marshallian demand curve for x. Is it always downward sloping? Why or Why not?

d) Is x a normal or an inferior good? How will you formally (i.e. mathematically) prove it?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider...
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider the following bundles of goods: A = (9, 4), B = (16, 16), C = (1, 36). a. Calculate the consumer’s utility level for each bundle of goods. b. Specify the preference ordering for the bundles using the “strictly preferred to” symbol and the “indifferent to” symbol. c. Now, take the natural log of the utility function. Calculate the new utility level provided by...
Suppose that a consumer has the utility function given by: U(x,y)= (x^a)*(y^b) With prices p^x, p^y...
Suppose that a consumer has the utility function given by: U(x,y)= (x^a)*(y^b) With prices p^x, p^y and the income M, and where a>0, b>0. a) Maximize this consumer's utility. Derive Marshallian demand for both goods. b) Show that at the optimum, the share of income spent on each good does not depend on prices or income. c) Show that the elasticity of Marshallian demand for x is constant. d) For good x, use your answers to b) the elasticities of...
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5,...
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5, the price of y is $15 and the income the consumer has to spend on these goods is $100. A) Determine the MRSyx if we consume the bundle of (X,Y) = (1,2). B) What if we consume the bundle of (50,2). C) What is the opportunity cost of X in terms of Y? D) What quantities of X and Y should this consumer consume...
In a research paper an economist assumes that the typical consumer has a utility U(X, Y)...
In a research paper an economist assumes that the typical consumer has a utility U(X, Y) = X^0.25Y^0.75 and a budget of $1,000. a) Consider the utility function. What is the consumer’s attitude towards mixing X and Y? What is the shape of the consumer’s indifference curves? Do you expect this consumer to choose a bundle in the interior of the budget line or a bundle at one of the corners? Discuss. b) Now, turn your attention to the budget...
Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360...
Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360 to spend, and the price of X, PX = 9, and the price of Y, PY = 1. a) (4 points) How much X and Y should the consumer purchase in order to maximize her utility? b) (2 points) How much total utility does the consumer receive? c) (4 points) Now suppose PX decreases to 4. What is the new bundle of X and...
Suppose the utility function for goods ?? and ?? is given by: u(x, y) = x0.5...
Suppose the utility function for goods ?? and ?? is given by: u(x, y) = x0.5 y0.5 a) Explain the difference between compensated (Hicksian) and uncompensated (Marshallian) demand functions. b) Calculate the uncompensated (Marshallian) demand function for ??, and describe how the demand curve for ?? is shifted by changes in income , and by changes in the price of the other good. c) Calculate the total expenditure function for ??.
Consider a consumer with the utility function U(x, y) =2 min(3x, 5y), that is, the two...
Consider a consumer with the utility function U(x, y) =2 min(3x, 5y), that is, the two goods are perfect complements in the ratio 3:5. The prices of the two goods are Px = $5 and Py = $10, and the consumer’s income is $330. At the optimal basket, the consumer buys _____ units of y. The utility she gets at the optimal basket is _____ At the basket (20, 15), the MRSx,y = _____.
Consider a consumer with the utility function U(x, y) = min(3x, 5y). The prices of the...
Consider a consumer with the utility function U(x, y) = min(3x, 5y). The prices of the two goods are Px = $5 and Py = $10, and the consumer’s income is $220. Illustrate the indifference curves then determine and illustrate on the graph the optimum consumption basket. Comment on the types of goods x and y represent and on the optimum solution.
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √...
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √ y   Are these preferences strictly convex? Derive the marginal rate of substitution Suppose, the utility function is: U(x,y) = -x +2 √ y   Are there any similarities or differences between the two utility functions?
Ron consumes two goods, X and Y. His utility function is given by U(X,Y) = 44XY....
Ron consumes two goods, X and Y. His utility function is given by U(X,Y) = 44XY. The price of X is $11 a unit; the price of Y is $8 a unit; and Ron has $352 to spend on X and Y. a. Provide the equation for Ron’s budget line. (Your answer for the budget line should be in the form Y = a – bX, with specific numerical values given for a and b.) b. Provide the numerical value...