Question

Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360...

Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360 to spend, and the price of X, PX = 9, and the price of Y, PY = 1.

a) (4 points) How much X and Y should the consumer purchase in order to maximize her utility?

b) (2 points) How much total utility does the consumer receive?

c) (4 points) Now suppose PX decreases to 4. What is the new bundle of X and Y that the consumer will demand?

d) (6 points) How much money would the consumer need in order to have the same utility level after the price change as before the price change?

e) (6 points) Of the total change in the quantity demanded of X, how much is due to the substitution effect and how much is due to the income effect?

Homework Answers

Answer #1

U = XY

Budget line: M = X.PX + Y.PY

(a) Budget line: 360 = 9X + Y

Utility is maximized when MUX / MUY = PX / PY = 9/1 = 9

MUX = U / X = Y

MUY = U / Y = X

MUX / MUY = Y / X = 9

Y = 9X

Substituting in budget line,

360 = 9X + 9X = 18X

X = 20

Y = 9 x 20 = 180

(b) U = 20 x 180 = 3600

(c) When PX = 4, Budget line: 360 = 4X + Y

MUX / MUY = Y / X = 4/1 = 4

Y = 4X

Substituting in budget line,

360 = 4X + 4X = 8X

X = 45

Y = 4 x 45 = 180

(d) Consumption after price change, priced at original PX = 45 x 9 + 180 x 1 = 405 + 180 = 585

Additional money needed = 585 - 360 = 225

(e) Total effect (TE) = 45 - 20 = 25

To find Substitution Effect (SE), we keep utility unchanged at original level, but substitute the new (X / Y) Ratio:

U = 3600 = X.4X = 4X2

X2 = 900

X = 30

SE = 30 - 20 = 10

Income effect = 45 - 30 = 15

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a consumer’s utility function is given byU(X, Y) =X^1/2 Y^1/2. Also, the consumer has $30...
Suppose a consumer’s utility function is given byU(X, Y) =X^1/2 Y^1/2. Also, the consumer has $30 to spend. The price of X,PX= $3, and the price of Y,PY= $5. a) (4 points) How much X and Y should the consumer purchase in order to maximize their utility? b) (4 points) How much utility does the consumer receive? c) (4 points) Now suppose PX increases to$6. What is the new bundle of X and Y that the consumer will demand? How...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*,...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*, y*) that would maximize utility. Suppose Px = $5 and Py = $10 and the consumer has $500 to spend. Write the consumer’s budget constraint. Use the budget constraint to write Y in terms of X. Substitute Y from above into the utility function U(x,y) = X1/2Y1/2. To solve for the utility maximizing, taking the derivative of U from (b) with respect to X....
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a....
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a. Assume the consumer has income $120 and initially faces the prices px = $1 and py = $2. How much x and y would they buy? b. Next, suppose the price of x were to increase to $4. How much would they buy now?    c. Decompose the total effect of the price change on demand for x into the substitution effect and the...
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider...
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider the following bundles of goods: A = (9, 4), B = (16, 16), C = (1, 36). a. Calculate the consumer’s utility level for each bundle of goods. b. Specify the preference ordering for the bundles using the “strictly preferred to” symbol and the “indifferent to” symbol. c. Now, take the natural log of the utility function. Calculate the new utility level provided by...
Suppose a consumer has the utility function U (x, y) = xy + x + y....
Suppose a consumer has the utility function U (x, y) = xy + x + y. Recall that for this function the marginal utilities are given by MUx(x,y) = y+1 and MUy(x,y) = x+1. (a) What is the marginal rate of substitution MRSxy? (b)If the prices for the goods are px =$2 and py =$4,and if the income of the consumer is M = $18, then what is the consumer’s optimal affordable bundle? (c) What if instead the prices are...
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and...
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and the consumer’s initial endowment of wealth is w=100. Graphically depict the income and substitution effects for this consumer if initially Px=1 =Py and then the price of commodity x decreases to Px=1/2.
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s...
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s demand function for good x as a function of prices px and py, and of income m, assuming a corner solution? Group of answer choices a.x = (m – 3px)/px b.x = m/px – 4px/py c.x = m/px d.x = 0
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY =I. (a) Given the consumer’s utility function, how does the consumer view these two goods? In other words, are they perfect substitutes, perfect complements, or are somewhat substitutable? (2 points) (b) Solve for the consumer’s demand functions, X∗ and Y ∗. (5 points) (c) Assume PX = 3, PY = 2, and I = 200. What is the consumer’s optimal bundle? (2 points) 2....
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5,...
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5, the price of y is $15 and the income the consumer has to spend on these goods is $100. A) Determine the MRSyx if we consume the bundle of (X,Y) = (1,2). B) What if we consume the bundle of (50,2). C) What is the opportunity cost of X in terms of Y? D) What quantities of X and Y should this consumer consume...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT