Question

3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider...

3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider the following bundles of goods: A = (9, 4), B = (16, 16), C = (1, 36).

a. Calculate the consumer’s utility level for each bundle of goods.

b. Specify the preference ordering for the bundles using the “strictly preferred to” symbol and the “indifferent to” symbol.

c. Now, take the natural log of the utility function. Calculate the new utility level provided by each bundle.

d. Specify the new preference ordering for the bundles using the “strictly preferred to” symbol and the “indifferent to” symbol.

4. Suppose that you are consuming at a specific bundle of goods, and your marginal rate of substitution at the current bundle is 4. Suppose that the price ratio is currently 3.

a. How should you change the bundle of goods you are consuming to maximize your utility if your preferences are Cobb-Douglas?

b. Suppose now that you are consuming a different bundle of goods, and that your marginal rate of substitution at the new bundle is 3. Suppose that the price ratio has not changed. How should you change the bundle of goods you are consuming to maximize your utility if your preferences are Cobb-Douglas?

5. (5 points) Suppose that a consumer has the utility function U(X,Y) = XY^3 . The price of X is 12, the price of Y is 8, and the consumer has an income of 96. Solve for the consumer’s optimal consumption bundle. How much utility does the consumer receive from this bundle?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360...
Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360 to spend, and the price of X, PX = 9, and the price of Y, PY = 1. a) (4 points) How much X and Y should the consumer purchase in order to maximize her utility? b) (2 points) How much total utility does the consumer receive? c) (4 points) Now suppose PX decreases to 4. What is the new bundle of X and...
Suppose a consumer has the utility function U (x, y) = xy + x + y....
Suppose a consumer has the utility function U (x, y) = xy + x + y. Recall that for this function the marginal utilities are given by MUx(x,y) = y+1 and MUy(x,y) = x+1. (a) What is the marginal rate of substitution MRSxy? (b)If the prices for the goods are px =$2 and py =$4,and if the income of the consumer is M = $18, then what is the consumer’s optimal affordable bundle? (c) What if instead the prices are...
Consider a consumer with preferences represented by the utility function u(x,y)=3x+6 sqrt(y) (a) Are these preferences...
Consider a consumer with preferences represented by the utility function u(x,y)=3x+6 sqrt(y) (a) Are these preferences strictly convex? (b) Derive the marginal rate of substitution. (c) Suppose instead, the utility function is: u(x,y)=x+2 sqrt(y) Are these preferences strictly convex? Derive the marginal rate of substitution. (d) Are there any similarities or differences between the two utility functions?
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √...
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √ y   Are these preferences strictly convex? Derive the marginal rate of substitution Suppose, the utility function is: U(x,y) = -x +2 √ y   Are there any similarities or differences between the two utility functions?
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5,...
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5, the price of y is $15 and the income the consumer has to spend on these goods is $100. A) Determine the MRSyx if we consume the bundle of (X,Y) = (1,2). B) What if we consume the bundle of (50,2). C) What is the opportunity cost of X in terms of Y? D) What quantities of X and Y should this consumer consume...
2. Consider a consumer with preferences represented by the utility function: u(x,y)=3x+6sqrt(y) (a) Are these preferences...
2. Consider a consumer with preferences represented by the utility function: u(x,y)=3x+6sqrt(y) (a) Are these preferences strictly convex? (b) Derive the marginal rate of substitution. (c) Suppose instead, the utility function is: u(x,y)=x+2sqrt(y) Are these preferences strictly convex? Derive the marginal rate of sbustitution. (d) Are there any similarities or differences between the two utility functions?
Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility...
Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility function u(x, y) = 1/3ln(x) + 2/3n(y) 1. Assume the prices of the two goods are initially both $10, and her income is $1000. Obtain the consumer’s demands for x and y. 2. If the price of good x increases to $20, what is the impact on her demand for good x? 3. Decompose this change into the substitution effect, and the income effect....
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the...
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the quantities of each of the two goods consumed. A consumer faces prices for x of $2 and y of $1, and is currently consuming 10 units of good X and 30 units of good Y with all available income. What can we say about this consumption bundle? Group of answer choices a.The consumption bundle is not optimal; the consumer could increase their utility by...
Suppose the Utility function of the consumer is given by U = x + 5y^3 Suppose...
Suppose the Utility function of the consumer is given by U = x + 5y^3 Suppose the price of x is given by p x and the price of y is given by p y and the budget income of the consumer is given by I. Price of x, Price of y and Income are always strictly positive. Assume interior solution. a) Write the statement of the problem b) Compute the parametric expressions of the equilibrium quantity of x &...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*,...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*, y*) that would maximize utility. Suppose Px = $5 and Py = $10 and the consumer has $500 to spend. Write the consumer’s budget constraint. Use the budget constraint to write Y in terms of X. Substitute Y from above into the utility function U(x,y) = X1/2Y1/2. To solve for the utility maximizing, taking the derivative of U from (b) with respect to X....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT