Which function represents a production function with constant returns to scale? (Select each correct answer.)
q=sqrt(k+l)
q=sqrt(k) +sqrt(l)
q=sqrt(k*l)
q=5k + l
q=5k +5l
q=min{k,l)
To check constant returns to scale, we will increase the scale by a constant proportion m (i.e. multiply both factors of production by m), and then see the impact on output q.
Let's say q' is the new output.
So if q' > mq --> increasing returns
If q' = mq --> constant returns
If q' < mq --> decreasing returns
1. q = √(k+l)
q' = √(mk+ml) = m√(k+l) = mq --> constant returns
2. q = √(k) + √(l)
q' = √(mk) + √(ml) = √m (√k + √l) = √m(q) < mq --> decreasing returns
3. q = √(kl)
q' = √((mk)(ml)) = m√(kl) = mq --> constant returns
4. q = 5k + l
q' = 5(mk) + ml = m (5k + l) = mq --> constant returns
5. q = 5k + 5l
q' = 5mk + 5ml = m(5k + 5l) = mq --> constant returns
6. q = min{k,l)
q' = min{mk, ml) = m min{k,l} = mq --> constant returns
Get Answers For Free
Most questions answered within 1 hours.