Question

A firm produces output according to the production function. Q=sqrt(L*K) The associated marginal products are MPL...

A firm produces output according to the production function. Q=sqrt(L*K) The
associated marginal products are MPL = .5*sqrt(K/L) and MPK = .5*sqrt(L/K)

(a) Does this production function have increasing, decreasing, or constant marginal
returns to labor?
(b) Does this production function have increasing, decreasing or constant returns to
scale?
(c) Find the firm's short-run total cost function when K=16. The price of labor is w and
the price of capital is r.
(d) Find the firm's long-run total cost function when r=9 and w=1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the production function Q = f(L,K) = 10KL / K+L. The marginal products of labor...
Consider the production function Q = f(L,K) = 10KL / K+L. The marginal products of labor and capital for this function are given by MPL = 10K^2 / (K +L)^2, MPK = 10L^2 / (K +L)^2. (a) In the short run, assume that capital is fixed at K = 4. What is the production function for the firm (quantity as a function of labor only)? What are the average and marginal products of labor? Draw APL and MPL on one...
(2) Consider the production function f(L, K) = 2K √ L. The marginal products of labor...
(2) Consider the production function f(L, K) = 2K √ L. The marginal products of labor and capital for this function are given by MPL = K √ L , MPK = 2√ L. Prices of inputs are w = 1 per hour of labor and r = 4 per machine hour. For the following questions suppose that the firm currently uses K = 2 machine hours, and that this can’t be changed in the short–run. (e) What is the...
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
Consider a firm that used only two inputs, capital (K) and labor (L), to produce output....
Consider a firm that used only two inputs, capital (K) and labor (L), to produce output. The production function is given by: Q = 60L^(2/3)K^(1/3) . a.Find the returns to scale of this production function. b. Derive the Marginal Rate of Technical Substitutions (MRTS) between capital and labor. Does the law of diminishing MRTS hold? Why? Derive the equation for a sample isoquant (Q=120) and draw the isoquant. Be sure to label as many points as you can. c. Compute...
a firm produces a product with labor and capital as inputs. The production function is described...
a firm produces a product with labor and capital as inputs. The production function is described by Q=LK. the marginal products associated with this production function are MPL=K and MPK=L. let w=1 and r=1 be the prices of labor and capital, respectively a) find the equation for the firms long-run total cost curve curve as a function of quantity Q b) solve the firms short-run cost-minimization problem when capital is fixed at a quantity of 5 units (ie.,K=5). derive the...
Answer the following questions about the producer’s production function: Q = 2K1/2L2 Does the production function...
Answer the following questions about the producer’s production function: Q = 2K1/2L2 Does the production function display increasing, constant, or decreasing returns to scale? [Prove your answer by increasing all inputs by a factor of c in your analysis.] Find MPL if capital is fixed at K0=9 and determine whether the production process follows the law of diminishing returns (LDR) to labor. If input prices are r=5 and w=4 for capital and labor, respectively, and suppose MPK=40 and the firm...
A firm has the production function: Q = L 1 2 K 1 2 Find the...
A firm has the production function: Q = L 1 2 K 1 2 Find the marginal product of labor (MPL), marginal product of capital (MPK), and marginal rate of technical substitution (MRTS). Note: Finding the MRTS is analogous to finding the MRS from a utility function: MRTS=-MPL/MPK. Be sure to simplify your answer as we did with MRS. A firm has the production function: Q = L 1 2 K 3 4 Find the marginal product of labor (MPL),...
Given production function: Q=L3/5K1/5. Where L is labor, K is capital, w is wage rate, and...
Given production function: Q=L3/5K1/5. Where L is labor, K is capital, w is wage rate, and r is rental rate. What kinds of returns to scale does your firm face? Find cost minimizing level of L and K, and long run cost function.
Consider the following production function: x = f(l,k) = Albkbwhere x is the output, l is...
Consider the following production function: x = f(l,k) = Albkbwhere x is the output, l is the labour input, k is the capital input, and A, b are positive constants. (a) Set up the cost minimization problem and solve for the first order conditions using the Lagrange Method. Let w be the wage rate and r the rental rate of capital. (b) Using your answer in (a), find how much labour and capital would the firm use to produce x...
Suppose a firm’s production function is given by Q = 2K^1/2 * L^1/2 , where K...
Suppose a firm’s production function is given by Q = 2K^1/2 * L^1/2 , where K is capital used and L is labour used in the production. (a) Does this production function exhibit increasing returns to scale, constant returns to scale or decreasing returns to scale? (b) Suppose the price of capital is r = 1 and the price of labour is w = 4. If a firm wants to produce 16 chairs, what combination of capital and labor will...