Question

Assuming a Cobb-Douglas production function with constant returns to scale, then, as L rises with K...

Assuming a Cobb-Douglas production function with constant returns to scale, then, as L rises with K and A constant, it will be the case

Group of answer choices

Both the marginal product of labour and the marginal product of capital will fall

Both the marginal product of labour and the marginal product of capital will rise

The marginal product of labour will rise and the marginal product of capital will fall

The marginal product of labour will fall and the marginal product of capital will rise

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
A? Cobb-Douglas production function A. exhibits constant returns to scale. B. exhibits decreasing returns to scale....
A? Cobb-Douglas production function A. exhibits constant returns to scale. B. exhibits decreasing returns to scale. C. exhibits increasing returns to scale. D. can exhibit? constant, increasing, or decreasing returns to scale.
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and...
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and A > 0. 1. The Cobb-Douglas function can be either increasing, decreasing or constant returns to scale depending on the values of the exponents on L and K. Prove your answers to the following three cases. (a) For what value(s) of α is F(L,K) decreasing returns to scale? (b) For what value(s) of α is F(L,K) increasing returns to scale? (c) For what value(s)...
Which is/are incorrect about the Cobb-Douglas production function: Y equals K to the power of alpha...
Which is/are incorrect about the Cobb-Douglas production function: Y equals K to the power of alpha L to the power of 1 minus alpha end exponent (0 < alpha < 1 )? All are correct it increases in both K and L the share of total income that goes to capital and labor depend on the amount of K and L it exhibits diminishing marginal returns to both K and L it is constant returns to scale
1. Using the Cobb-Douglas production function: Yt = AtKt1/3Lt2/3 If K = 27, L = 8...
1. Using the Cobb-Douglas production function: Yt = AtKt1/3Lt2/3 If K = 27, L = 8 A = 2, and α = 1/3, what is the value of Y? (For K and L, round to the nearest whole number) ______ 2. If Y = 300, L = 10, and α = 1/3, what is the marginal product of labor? ______ 3. Using the values for Y and α above, if K = 900, what is the marginal product of capital?...
2. Consider a Cobb-Douglas production function Q = A . L^a . K^b . Answer the...
2. Consider a Cobb-Douglas production function Q = A . L^a . K^b . Answer the following in terms of L, K, a, b (a) What is the marginal product of labour ? (b) What is the marginal product of capital ? (c) What is the rate of technical substitution (RTS L for K)? (d) From the above what is the relation between K L and RT SL,K? (e) What is the relation between ∆ K L ∆RT SL,K (f)...
Cobb-Douglas Production Function & Cost of Production A firm’s production function is given as – q...
Cobb-Douglas Production Function & Cost of Production A firm’s production function is given as – q = 2K0.4N0.6 What kind of returns to scale does this production technology exhibit? Justify your answer. Find out the expression for the marginal product of labor. Find out the expression for the marginal product of capital. Find out the expression for MRTS.
Consider the following Cobb-Douglas production function: y(K,L) = 2K^(0.4)*L^(0.6), where K denotes the amount of capital...
Consider the following Cobb-Douglas production function: y(K,L) = 2K^(0.4)*L^(0.6), where K denotes the amount of capital and L denotes the amount of labour employed in the production process. a) Compute the marginal productivity of capital, the marginal productivity of labour, and the MRTS (marginal rate of technical substitution) between capital and labour. Let input prices be r for capital and w for labour. A representative firm seeks to minimize its cost of producing 100 units of output. b) By applying...
for a firm with Cobb-Douglas production function q = f (k, L) = k ^ (1/2)...
for a firm with Cobb-Douglas production function q = f (k, L) = k ^ (1/2) L ^ (1/2) calculate the total, average and marginal cost.