Question

Suppose a colleague of yours estimated a regression model using 100,000 observations, and found that all...

Suppose a colleague of yours estimated a regression model using 100,000 observations, and found that all the explanatory variables in the model were highly significant (at p values of less than 0.01). However, when calculating the marginal effects, the actual impact of many of the x variables on the y variable was very small in magnitude, suggesting the x variables do little to help predict y. How could this be possible (Hint, reference the formula for the standard error of your coefficient).

Homework Answers

Answer #1

The significance of the variables is not decided by the magnitude of the coefficient only, rather the strandard deviation of the respective coefficient. The t-statistic is calculated as the [coefficient/se(coefficient)] under the null hypothesis that the concerned parameter is equal to zero. Since the coefficients of the variables are highly significant, the respective standard errors are also very small. The magntude of the coefficients are very small, which indicates that the the scale of those explanatory variables are very large, so that the overall contribution of the explanatory variables are meaningful.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using 20 observations, the multiple regression model y = β0 + β1x1 + β2x2 + ε...
Using 20 observations, the multiple regression model y = β0 + β1x1 + β2x2 + ε was estimated. A portion of the regression results is shown in the accompanying table: df SS MS F Significance F Regression 2 2.12E+12 1.06E+12 55.978 3.31E-08 Residual 17 3.11E+11 1.90E+10 Total 19 2.46E+12 Coefficients Standard Error t Stat p-value Lower 95% Upper 95% Intercept −986,892 130,984 −7.534 0.000 −1,263,244 −710,540 x1 28,968 32,080 0.903 0.379 −38,715 96,651 x2 30,888 32,925 0.938 0.362 −38,578 100,354...
The estimated regression equation for a model involving two independent variables and 55 observations is: y-hat...
The estimated regression equation for a model involving two independent variables and 55 observations is: y-hat = 55.17 + 1.1X1 - 0.153X2 Other statistics produced for analysis include: SSR = 12370.8 SST = 35963.0 Sb1 = 0.33 Sb2 = 0.20 Interpret b1 and b2 in this estimated regression equation b. Predict y when X1 = 55 and X2 = 70. Compute R-square and Adjusted R-Square. e. Compute MSR and MSE. f. Compute F and use it to test whether the...
CW 2 List 5 assumptions of the simple linear regression model. You have estimated the following...
CW 2 List 5 assumptions of the simple linear regression model. You have estimated the following equation using OLS: ŷ = 33.75 + 1.45 MALE where y is annual income in thousands and MALE is an indicator variable such that it is 1 for males and 0 for females. a) According to this model, what is the average income for females? b) According to this model, what is the average income for females? c) What does OLS stand for? How...
You estimate a simple linear regression model using a sample of 25 observations and obtain the...
You estimate a simple linear regression model using a sample of 25 observations and obtain the following results (estimated standard errors in parentheses below coefficient estimates): y = 97.25 + 19.74 *x (3.86) (3.42) You want to test the following hypothesis: H0: beta2 = 1, H1: beta2 >12. If you choose to reject the null hypothesis based on these results, what is the probability you have committed a Type I error? a.)between .01 and .02 b.)between .02 and .05 c.)less...
A regression model to predict Y, the state burglary rate per 100,000 people for 2005, used...
A regression model to predict Y, the state burglary rate per 100,000 people for 2005, used the following four state predictors: X1 = median age in 2005, X2 = number of 2005 bankruptcies, X3 = 2004 federal expenditures per capita (a leading predictor), and X4 = 2005 high school graduation percentage. (a) Fill in the values in the table given here for a two-tailed test at α = 0.01 with 40 d.f. (Negative values should be indicated by a minus...
Consider the following results of a multiple regression model of dollar price of unleaded gas (dependent...
Consider the following results of a multiple regression model of dollar price of unleaded gas (dependent variable) and a set of independent variables: price of crude oil, value of S&P500, price U.S. Dollars against Euros, personal disposal income (in million of dollars) : Coefficient t-statistics Intercept 0.5871 68.90 Crude Oil 0.0651 32.89 S&P 500 -0.0020 18.09 Price of $ -0.0415 14.20 PDI 0.0001 17.32 R-Square = 97% What will be forecasted price of unleaded gas if the value of independent...
Question 1 How is a residual calculated in a regression model? i.e. what is the meaning...
Question 1 How is a residual calculated in a regression model? i.e. what is the meaning of a residual? a)The difference between the actual value, y, and the fitted value, y-hat b)The difference between the fitted value, y-hat, and the mean, y-bar c)The difference between the actual value, y, and the mean, y-ba d)The square of the difference between the fitted value, y-hat, and the mean, y-bar Question 2 Larger values of r-squared imply that the observations are more closely...
1.    In a multiple regression model, the following coefficients were obtained: b0 = -10      b1 =...
1.    In a multiple regression model, the following coefficients were obtained: b0 = -10      b1 = 4.5     b2 = -6.0 a.    Write the equation of the estimated multiple regression model. (3 pts) b     Suppose a sample of 25 observations produces this result, SSE = 480. What is the estimated standard error of the estimate? (5 pts) 2.    Consider the following estimated sample regression equation: Y = 12 + 6X1 -- 3 X2 Determine which of the following statements are true,...
Here are 21 observations from a dataset of liver disease deaths per 100,000 people (liver) and...
Here are 21 observations from a dataset of liver disease deaths per 100,000 people (liver) and the liters of wine consumed per capita (wine).  To gather the data the researcher calculated wine per capita by calculating total wine consumed in a country and dividing by the population; they used official records to determine the number of people with liver disease and again divided by total population.  For this question you are welcome to use Excel, but you still need show the formula...
1. For a pair of sample x- and y-values, what is the difference between the observed...
1. For a pair of sample x- and y-values, what is the difference between the observed value of y and the predicted value of y? a) An outlier b) The explanatory variable c) A residual d) The response variable 2. Which of the following statements is false: a) The correlation coefficient is unitless. b) A correlation coefficient of 0.62 suggests a stronger correlation than a correlation coefficient of -0.82. c) The correlation coefficient, r, is always between -1 and 1....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT