Question

In a regression analysis, _____ represents the proportion of variations in the dependent variable, Y, could...

In a regression analysis, _____ represents the proportion of variations in the dependent variable, Y, could be explained by the independent variables (all the Xs).

R2

F statistics

t statistics

p value

Homework Answers

Answer #1

Since R2 can be defined as a statistical measure of how close the data are to the fitted regression line. This is also known as the coefficient of determination. The value of R square lies between 0 and 1. If the value of R square is less than 1, then it means some observations do not lie on the regression line.

R squared= Model SS/ Total SS

For example if R square value is 0.80, it means 80% variation in the Y( dependent) is explained by the independent variables (x).

Hence it can be said that in a regression analysis, R2 represents the proportion of variations in the dependent variable, Y, could be explained by the independent variables (all the Xs).

Hence option first is the correct answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The owner of a movie theater company used multiple regression analysis to predict gross revenue (y)...
The owner of a movie theater company used multiple regression analysis to predict gross revenue (y) as a function of television advertising (x1) and newspaper advertising (x2). The estimated regression equation was ŷ = 82.5 + 2.26x1 + 1.30x2. The computer solution, based on a sample of eight weeks, provided SST = 25.3 and SSR = 23.415. (a)Compute and interpret R2 and Ra2. (Round your answers to three decimal places.) The proportion of the variability in the dependent variable that...
The owner of a movie theater company used multiple regression analysis to predict gross revenue (y)...
The owner of a movie theater company used multiple regression analysis to predict gross revenue (y) as a function of television advertising (x1) and newspaper advertising (x2).The estimated regression equation was ŷ = 83.1 + 2.23x1 + 1.30x2. The computer solution, based on a sample of eight weeks, provided SST = 25.4 and SSR = 23.395. (a) Compute and interpret R2 and Ra2. (Round your answers to three decimal places.) The proportion of the variability in the dependent variable that...
1, The _________________measures the proportion of variation in the dependent variable that is explained by each...
1, The _________________measures the proportion of variation in the dependent variable that is explained by each independent variable holding all other independent (explanatory) variables constant.    coefficient of regression    coefficient of correlation    coefficient of partial determination    coefficient of multiple determination 2, The coefficient of partial determination measures the proportion of variation in the ______________ that is explained by each ____________ holding all other independent (explanatory) variables constant.    dependent variable, dependent variable    independent variable , dependent...
The owner of a movie theater company used multiple regression analysis to predict gross revenue (y)...
The owner of a movie theater company used multiple regression analysis to predict gross revenue (y) as a function of television advertising (x1)  and newspaper advertising (x2).  The estimated regression equation was ŷ = 83.8 + 2.26x1 + 1.50x2. The computer solution, based on a sample of eight weeks, provided SST = 25.8 and SSR = 23.385. (a) Compute and interpret  R2 and Ra2. (Round your answers to three decimal places.) The proportion of the variability in the dependent variable that can be...
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple...
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple R 0.885464 R Square 0.784046 variation Adjusted R Square 0.76605 Standard Error 85.4675 Observations 40 ANOVA df SS MS F Significance F Regression 3 954738.9 318246.3089 43.56737 4.55E-12 Residual 36 262969 7304.693706 Total 39 1217708 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -218.31 63.95851 -3.413304572 0.001602 -348.024 -88.596 -348.024 -88.596 Degree Days 0.275079 0.036333 7.571119093 5.94E-09...
The following output was obtained from a regression analysis of the dependent variable Rating and an...
The following output was obtained from a regression analysis of the dependent variable Rating and an independent variable Price. (10 points) ANOVA df SS MS F Regression 1 372.707 372.707 42.927 Residual 15 130.234 8.682 Total 16 502.941 Coefficients Standard Error t Stat P-value Intercept 45.623 3.630 12.569 0.000 Price 0.107 0.016 6.552 0.000 Use the critical value approach to perform an F test for the significance of the linear relationship between Rating and Price at the 0.05 level of...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable)...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable). ANOVA df SS Regression 1 39947.80 Residual (Error) 10 8280.81 Total 11 48228.61 Coefficients Standard Error t Stat P-value Intercept 69.190 26.934 2.569 0.02795 X 2.441 0.351 6.946 0.00004 1.   What is the estimated regression equation that relates Y to X? 2.   Is the regression relationship significant? Use the p-value approach and alpha = 0.05 to answer this question. 3.   What is the...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable)...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable). ANOVA df SS Regression 1 3348.312 Residual 8 9529.811 Total 9 12878.123 Coefficients Standard Error t Stat P-value Intercept 247.56 83.280 1.689 0.030 X 148.62 38.312 1.283 0.075 1. What is the estimated regression equation that relates y to x? (2 Points) 2. Is the regression relationship significant? Use a p-value and alpha = 0.05. (2 Points) 3. What is...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable)...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable). ANOVA df SS Regression 1 39947.80 Residual (Error) 10 8280.81 Total 11 48228.61 Coefficients Standard Error t Stat P-value Intercept 69.190 26.934 2.569 0.02795 X 2.441 0.351 6.946 0.00004 1.   What is the estimated regression equation that relates Y to X? (2 Points) 2.   Is the regression relationship significant? Use the p-value approach and alpha = 0.05 to answer this...
Regression ____ (b values) indicate how much influence each independent variable has on the dependent variable....
Regression ____ (b values) indicate how much influence each independent variable has on the dependent variable. Regression analysis serves two main purposes: to define the relationship between variables and to ____ values of the dependent variable using what we know about the existing correlation between the variables. The coefficient of multiple determination, R^2, is interpreted as the percentage of ____ in the dependent variable that is explained by the independent variable.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT