Question

Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable)...

Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable).

ANOVA

df

SS

Regression

1

39947.80

Residual (Error)

10

8280.81

Total

11

48228.61

Coefficients

Standard Error

t Stat

P-value

Intercept

69.190

26.934

2.569

0.02795

X

2.441

0.351

6.946

0.00004

1.   What is the estimated regression equation that relates Y to X? (2 Points)

2.   Is the regression relationship significant? Use the p-value approach and alpha = 0.05 to answer this question. (2 Points)

3.   What is the estimated value of Y if X = 37? (2 Points)

4.   Interpret the meaning of the value of the coefficient of determination which is 0.83. Be very specific. (2 Points)

Homework Answers

Answer #1

(A) Using the given regression output data table

Regression equation can be written as

y = 69.190 + 2.441*x

(B) Yes, regression relationship is significant as we can see that the p value for the slope coefficient is 0.00004

this p value is less than significance level of 0.05, so it is significant

(C) To find the estimated value of y, put x = 37 in the regression equation

we get

= 69.190 + 2.441*37

= 69.190 + 90.317

= 159.51

(D) Given that R^2 = 0.83

or we can say 83%

this means that 83% variation in the dependent variable y can be explained by the independent variable x

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable)...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable). ANOVA df SS Regression 1 39947.80 Residual (Error) 10 8280.81 Total 11 48228.61 Coefficients Standard Error t Stat P-value Intercept 69.190 26.934 2.569 0.02795 X 2.441 0.351 6.946 0.00004 1.   What is the estimated regression equation that relates Y to X? 2.   Is the regression relationship significant? Use the p-value approach and alpha = 0.05 to answer this question. 3.   What is the...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable)...
Shown below is a portion of an Excel output for regression analysis relating Y (dependent variable) and X (independent variable). ANOVA df SS Regression 1 3348.312 Residual 8 9529.811 Total 9 12878.123 Coefficients Standard Error t Stat P-value Intercept 247.56 83.280 1.689 0.030 X 148.62 38.312 1.283 0.075 1. What is the estimated regression equation that relates y to x? (2 Points) 2. Is the regression relationship significant? Use a p-value and alpha = 0.05. (2 Points) 3. What is...
The following output was obtained from a regression analysis of the dependent variable Rating and an...
The following output was obtained from a regression analysis of the dependent variable Rating and an independent variable Price. (10 points) ANOVA df SS MS F Regression 1 372.707 372.707 42.927 Residual 15 130.234 8.682 Total 16 502.941 Coefficients Standard Error t Stat P-value Intercept 45.623 3.630 12.569 0.000 Price 0.107 0.016 6.552 0.000 Use the critical value approach to perform an F test for the significance of the linear relationship between Rating and Price at the 0.05 level of...
1. The following output was obtained from a regression analysis of the dependent variable Rating and...
1. The following output was obtained from a regression analysis of the dependent variable Rating and an independent variable Price.                                                         Anova df SS MS f Regression 1 301.701 301.701 32.94 Residual 15 128.221 9.1586 Total 16 429.922 Coefficients Standard Error T Stat P value Intercept 45.623 3.630 12.569 0.000 Price .107 0.016 6.552 0.002 a. Use the critical value approach to perform an F test for the significance of the linear relationship between Rating and Price at the 0.05 level...
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics...
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics Multiple R (1) R Square 0.923 Adjusted R Square (2) Standard Error 3.35 Observations ANOVA df SS MS F Significance F Regression (3) 1612 (7) (9) Residual 12 (5) (8) Total (4) (6) Coefficients Standard Error t Stat P-value Intercept 8.103 2.667 x1 7.602 2.105 (10) x2 3.111 0.613 (11)
Consider the following computer output of a multiple regression analysis relating annual salary to years of...
Consider the following computer output of a multiple regression analysis relating annual salary to years of education and years of work experience. Regression Statistics Multiple R 0.7345 R Square 0.5395 Adjusted R Square 0.5195 Standard Error 2134.9715 Observations 49 ANOVA df SS MS F Significance F Regression 2 245,644,973.9500 122,822,486.9750 26.9460 1.8E-08 Residual 46        209,672,760.0092 4,558,103.4785 Total 48 455,317,733.9592 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 14271.51879 2,525.5672 5.6508 0.000000963 9187.8157 19,355.2219 Education (Years) 2351.3035...
Consider the following computer output of a multiple regression analysis relating annual salary to years of...
Consider the following computer output of a multiple regression analysis relating annual salary to years of education and years of work experience. Regression Statistics Multiple R 0.7338 R Square 0.5384 Adjusted R Square 0.5183 Standard Error 2139.0907 Observations 49 ANOVA df SS MS F Significance F Regression 2 245,472,093.5833 122,736,046.7917 26.8234 1.9E-08 Residual 46 210,482,624.6208 4,575,709.2309 Total 48 455,954,718.2041 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 14275.75637 2,530.4400 5.6416 0.000000994 9182.2448 19,369.2679 Education (Years) 2350.2675 338.3625...
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple...
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple R 0.885464 R Square 0.784046 variation Adjusted R Square 0.76605 Standard Error 85.4675 Observations 40 ANOVA df SS MS F Significance F Regression 3 954738.9 318246.3089 43.56737 4.55E-12 Residual 36 262969 7304.693706 Total 39 1217708 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -218.31 63.95851 -3.413304572 0.001602 -348.024 -88.596 -348.024 -88.596 Degree Days 0.275079 0.036333 7.571119093 5.94E-09...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and the p-value of the model and the coefficients individually. SUMMARY OUTPUT Regression Statistics Multiple R 0.19476248 R Square 0.037932424 Adjusted R Square 0.035147858 Standard Error 12.09940236 Observations 694 ANOVA df SS MS F Significance F Regression 2 3988.511973 1994.255986 13.62238235 1.5759E-06 Residual 691 101159.3165 146.3955376 Total 693 105147.8284 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 27.88762549...
A regression analysis relating a company’s sales, their advertising expenditure, price, and time resulted in the...
A regression analysis relating a company’s sales, their advertising expenditure, price, and time resulted in the following. Regression Statistics Multiple R 0.8800 R Square 0.7744 Adjusted R Square 0.7560 Standard Error 232.29 Observations 25 ANOVA df SS MS F Significance F Regression 3 53184931.86 17728310.62 328.56 0.0000 Residual 21 1133108.30 53957.54 Total 24 54318040.16 Coefficients Standard Error t Stat P-value Intercept 927.23 1229.86 0.75 0.4593 Advertising (X1) 1.02 3.09 0.33 0.7450 Price (X2) 15.61 5.62 2.78 0.0112 Time (X3) 170.53...