Question

Prove the Master theorem case for which f(n) = O(logba).

Prove the Master theorem case for which f(n) = O(logba).

Homework Answers

Answer #1

Hello, Student I hope you are doing good and well in lockdown .

Here is the answer of your question and If you have any doubt then feel free to ask in comment section, I am always happy to help .

Prove the Master theorem case for which f(n) = O(logba)  

Thank you !!

Have a nice day :)

And Do not forget to hit that like button , it takes only 1-2 seconds.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Is it possible to apply master theorem when f(n) = loglogn? Master Theorem ref: aT(n/b) +...
Is it possible to apply master theorem when f(n) = loglogn? Master Theorem ref: aT(n/b) + f(n)
Master Theorem: Let T(n) = aT(n/b) + f(n) for some constants a ≥ 1, b >...
Master Theorem: Let T(n) = aT(n/b) + f(n) for some constants a ≥ 1, b > 1. (1). If f(n) = O(n logb a− ) for some constant > 0, then T(n) = Θ(n logb a ). (2). If f(n) = Θ(n logb a ), then T(n) = Θ(n logb a log n). (3). If f(n) = Ω(n logb a+ ) for some constant > 0, and af(n/b) ≤ cf(n) for some constant c < 1, for all large n,...
Consider function f (n) = 3n^2 + 9n + 554. Prove f(n) = O(n^2) Prove that...
Consider function f (n) = 3n^2 + 9n + 554. Prove f(n) = O(n^2) Prove that f(n) = O(n^3)
Let f,g be positive real-valued functions. Use the definition of big-O to prove: If f(n) is...
Let f,g be positive real-valued functions. Use the definition of big-O to prove: If f(n) is O(g(n)), then f2(n)+f4(n) is O(g2(n)+g4(n)).
Assume that f(n) = O(g(n)). Can g(n) = O(f(n))? Are there cases where g(n) is not...
Assume that f(n) = O(g(n)). Can g(n) = O(f(n))? Are there cases where g(n) is not O(f(n))? Prove your answers (give examples for the possible cases as part of your proofs, and argue the result is true for your example).
Solve the following recurrence relations. If possible, use the Master Theorem. If the Master Theorem is...
Solve the following recurrence relations. If possible, use the Master Theorem. If the Master Theorem is not possible, explain why not and solve it using another approach (substitution with n = 3h or h - log3(n). a. T(n) = 7 * n2 + 11 * T(n/3) b. T(n) = 4 * n3 * log(n) + 27 * T(n/3)
***Only Complete the Bolded Part of the Question*** Complete the asymptotic time complexity using Master theorem,...
***Only Complete the Bolded Part of the Question*** Complete the asymptotic time complexity using Master theorem, then use the "Elimination Method" to validate your solution. 1. T(n)= T(n-1) + n is O(n^2)
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined...
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined on an interval centred at a. IF f is continuous at a and f(a) > 0 THEN f is strictly positive on some interval centred at a.
State and prove the Chinese Remainder Theorem for the case of two simultaneous equations.
State and prove the Chinese Remainder Theorem for the case of two simultaneous equations.
Prove using the definition of O-notation that 2^(n+2)∈O(2^(2n)), but 2^(2n)∉O(2^(n+2)).
Prove using the definition of O-notation that 2^(n+2)∈O(2^(2n)), but 2^(2n)∉O(2^(n+2)).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT