Question

Solve the following recurrence relations. If possible, use the Master Theorem. If the Master Theorem is...

Solve the following recurrence relations. If possible, use the Master Theorem. If the Master Theorem is not possible, explain why not and solve it using another approach (substitution with n = 3h or h - log3(n).

a. T(n) = 7 * n2 + 11 * T(n/3)

b. T(n) = 4 * n3 * log(n) + 27 * T(n/3)

Homework Answers

Answer #1

a)


b)



Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Master Theorem: Let T(n) = aT(n/b) + f(n) for some constants a ≥ 1, b >...
Master Theorem: Let T(n) = aT(n/b) + f(n) for some constants a ≥ 1, b > 1. (1). If f(n) = O(n logb a− ) for some constant > 0, then T(n) = Θ(n logb a ). (2). If f(n) = Θ(n logb a ), then T(n) = Θ(n logb a log n). (3). If f(n) = Ω(n logb a+ ) for some constant > 0, and af(n/b) ≤ cf(n) for some constant c < 1, for all large n,...
Consider the recurrence relation T(1) = 0, T(n) = 25T(n/5) + 5n. (a) Use the Master...
Consider the recurrence relation T(1) = 0, T(n) = 25T(n/5) + 5n. (a) Use the Master Theorem to find the order of magnitude of T(n) (b) Use any of the various tools from class to find a closed-form formula for T(n), i.e. exactly solve the recurrence. (c) Verify your solution for n = 5 and n = 25.
Solve the following recurrence relations: 1. T(n) = T(n/3) + n for n > 1 T(1)...
Solve the following recurrence relations: 1. T(n) = T(n/3) + n for n > 1 T(1) = 1 2. T(n) = 4T(n/2) + n^2 for n > 1 T(1) = 1
Use Master Theorem to solve the following recurrences. Justify your answers. (1) T(n) = 3T(n/3) +...
Use Master Theorem to solve the following recurrences. Justify your answers. (1) T(n) = 3T(n/3) + n (2) T(n) = 8T(n/2) + n^2 (3) T(n) = 27T(n/3) + n^5 (4) T(n) = 25T(n/5) + 5n^2
Solve T(n) = T(n/4) + T(3n/4) + 6n using masters theorem if you can. If it...
Solve T(n) = T(n/4) + T(3n/4) + 6n using masters theorem if you can. If it fails, explain why and solve the recurrence equation
Show Proof of correctness and state, and solve the Recurrence using the Master Theorem. Let G...
Show Proof of correctness and state, and solve the Recurrence using the Master Theorem. Let G = G(V, E) be an arbitrary, connected, undirected graph with vertex set V and edge set E. Assume that every edge in E represents either a road or a bridge. Give an efficient algorithm that takes as input G and decides whether there exists a spanning tree of G where the number of edges that represents roads is floor[ (|V|/ √ 2) ]. Do...
Problem #1. Solve the following recurrence exactly.                         9n^2 - 15n + 106        &nbs
Problem #1. Solve the following recurrence exactly.                         9n^2 - 15n + 106                    if n = 0, 1 or 2             t(n)=                         t(n-1) + 2t(n-2) - 2t(n-3)         otherwise Problem #2. Solve the following recurrence exactly.                         n                                              if n = 0, 1 2, or 3             t(n)=                         t(n-1) + t(n-3) - t(n-4)             otherwise Problem #3. Solve the following recurrence exactly.                         n + 1                                       if n = 0, or 1             t(n)=                         3t(n-1) - 2t(n-2) +...
(Show all work!! Solve the?'s) Steps Use Eq. 7 from the theory section to solve for...
(Show all work!! Solve the?'s) Steps Use Eq. 7 from the theory section to solve for spring constant using the mass and period values you have filled into Table 2 Record the average spring constant value below Table 2 and use this value to fill the spring constant column in Table 3. Use Eq. 7 again to solve for “m” and determine the value of the unknown masses in Table 3. Eq 7:    k= 4π2  (m/T2) = Table 2: Determine Spring...
Using Chinese Remainder Theorem solve for X: x = 2 (mod 3) x = 4 (mod...
Using Chinese Remainder Theorem solve for X: x = 2 (mod 3) x = 4 (mod 5) x = 5 (mod 8) I have the answer the professor gave me, but I can`t understand what`s going on. So if you could please go over the answer and explain, it would help a lot. x = 2 (mod 3) x = 3a + 2 3a + 2 = 4 (mod 5) (2) 3a = 2 (2) (mod 5) -----> why number...
§ 1 Central Limit Theorem (CLT) 1. The CLT states: draw all possible samples of size...
§ 1 Central Limit Theorem (CLT) 1. The CLT states: draw all possible samples of size _____________ from a population. The result will be the sampling distribution of the means will approach the ___________________- as the sample size, n, increases. 2. The CLT tells us we can make probability statements about the mean using the normal distribution even though we know nothing about the ______________- 3. The standard error of the mean is the  ___________ of the sampling distribution of the...