Question

Assume that f(n) = O(g(n)). Can g(n) = O(f(n))? Are there cases where g(n) is not...

Assume that f(n) = O(g(n)). Can g(n) = O(f(n))? Are there cases where g(n) is not O(f(n))? Prove your answers (give examples for the possible cases as part of your proofs, and argue the result is true for your example).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
True or False...Provide your reasons If f(n) =o(g(n)), then f(n)=O(g(n)) If f(n) =O(g(n)), then f(n) ≤...
True or False...Provide your reasons If f(n) =o(g(n)), then f(n)=O(g(n)) If f(n) =O(g(n)), then f(n) ≤ g(n) 3.  If 1<a=O(na), then f(n)=O(nb) 4. A and B are two sorting algorithms. If A is O(n2) and B is O(n), then for an input of X integers, B can sort it faster than A.
1. (15 pts total) Prove or disprove each of the following claims, where f(n) and g(n)...
1. (15 pts total) Prove or disprove each of the following claims, where f(n) and g(n) are functions on positive values. (a) f(n) = O(g(n)) implies g(n) = Ω(f(n)) (b) f(n) = O(g(n)) implies 2^f(n) = O(2^g(n)) (c) f(n) = O((f(n))^2)
Are any of the following implications always true? Prove or give a counter-example. a) f(n) =...
Are any of the following implications always true? Prove or give a counter-example. a) f(n) = Θ(g(n)) -> f(n) = cg(n) + o(g(n)), for some real constant c > 0. *(little o in here) b) f(n) = Θ(g(n)) -> f(n) = cg(n) + O(g(n)), for some real constant c > 0. *(big O in here)
Let f,g be positive real-valued functions. Use the definition of big-O to prove: If f(n) is...
Let f,g be positive real-valued functions. Use the definition of big-O to prove: If f(n) is O(g(n)), then f2(n)+f4(n) is O(g2(n)+g4(n)).
1.Let f and g be two functions such that f(n)/g(n) converges to a positive value less...
1.Let f and g be two functions such that f(n)/g(n) converges to a positive value less than 1 as n tends to infinity. Which of the following is necessarily true? Select one: a. g(n)=Ω(f(n)) b. f(n)=Ω(g(n)) c. f(n)=O(g(n)) d. g(n)=O(f(n)) e. All of the answers 2. If T(n)=n+23 log(2n) where the base of the log is 2, then which of the following is true: Select one: a. T(n)=θ(n^2) b. T(n)=θ(n) c. T(n)=θ(n^3) d. T(n)=θ(3^n) 3. Let f and g be...
Justify the fact that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product d(n)e(n)...
Justify the fact that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product d(n)e(n) is O(f(n)g(n)).
Prove the additivity of big O notation: f, g and h are functions of input size...
Prove the additivity of big O notation: f, g and h are functions of input size n. Prove that if  $f \in \mathbb{O}(h)$ and $g \in \mathbb{O}(h)$, then $f+g \in \mathbb{O}(h)$
21.2. Let f(n) and g(n) be functions from N→R. Prove or disprove the following statements. (a)...
21.2. Let f(n) and g(n) be functions from N→R. Prove or disprove the following statements. (a) f(n) = O(g(n)) implies g(n) = O(f(n)). (c) f(n)=?(g(n)) if and only if (n)=O(g(n)) and g(n)=O(f(n)).
What can be said about the domain of the function f o g where f(y) =...
What can be said about the domain of the function f o g where f(y) = 4/(y-2) and g(x) = 5/(3X-1)? Express it in terms of a union of intervals of real numbers. Go to demos and obtain the graph of f, g and f o g. Find the inverse of the function f(x) = 4 + sqrt(x-2). State the domain and range of both the function and the inverse function in terms of intervals of real numbers. Go to...
Prove mathematically that if a Turing Machine runs in time O(g(n)), then it runs in time...
Prove mathematically that if a Turing Machine runs in time O(g(n)), then it runs in time O(h(g(n))+c), for any constant c >= 0 and any functions g(n) and h(n) where h(n) >= n.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT