Question

Suppose your RSA Public-key factors are p =6323 and q = 2833, and the public exponent e is 31. Suppose you were sent the Ciphertext 6627708. Write a program that takes the above parameters as input and implements the RSA decryption function to recover the plaintext.

IN PYTHON

Answer #1

**Answer : Given data**

* For enormous estimations of P and Q , the program can be moderate.

from decimal import Decimal

p = int(input('Enter the estimation of p : '))

q = int(input('Enter the estimation of q : '))

e = int(input('Enter public example e : '))

ct = int(input('Enter the estimation of ciphertext : '))

n = p*q

t = (p-1)*(q-1)

I = 1

while(1):

x = 1 + i*t

if x % e == 0:

d = int(x/e)

break

I += 1

def decrypt(ct, d, n):

dtt = Decimal(0)

dtt = pow(ct,d)

dt = dtt % n

return dt

print('Decrypted plaintext : ', decrypt(ct, d, n))

__________**THE END_**_____________

Suppose the totient for a given public key (52,494,503;7) is
inadvertently released and is equal to 52,479,768. What are p and
q? What is the decryption exponent d? For extra credit what is the
plaintext message of the ciphertext C=15,114,578 encrypted with the
given public key?

For solving the problems, you are required to use the following
formalization of the RSA public-key cryptosystem.
In the RSA public-key cryptosystem,
each participants creates his public key and secret key according
to the following steps:
· Select two very large
prime number p and q. The number of bits needed to represent p and
q might be 1024.
· Compute
n = pq
(n) = (p – 1) (q – 1).
The formula for (n) is owing to...

Perform encryption and decryption for the RSA algorithm using
these parameters: p = 13; q = 19; e = 5;
Plaintext should be the first three letters of the month you were
born (convert letters to the values 0-25). Note you need to do
three encryptions. Show how decryption works.
The above calculation is performing a cipher on the alphabet. How
does this method compare with a classic cipher?

Let p=3 and q=17 and let an RSA public-key cryptosystem be
given.
1. Why is the number 8 not a valid encryption-key?
2. We encrypt the number M=8 with the help of the encryption-key
e=3.
Why is the encrypted message C=2?
3. Why is the decryption key d for the encryption-key, (e=3),
equal to 11?
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Encryption

Below is an example of key generation, encryption, and
decryption using RSA. For the examples below, fill in the
blanks to indicate what each part is or answer the
question.
Public key is (23, 11) What is 23 called?
_______________, What is 11 called?_______________
Private key is (23, 13) What is 23
called?_______________, What is 13
called?_______________
23 can be part of the public key because it is very hard
to _______________ large prime numbers.
ENCRYPT (m) = m^e mod...

Let p=11, q=17, n = pq = 187. Your (awful) public RSA encryption
key is (e=107, n=187). (a) What is your private decryption key? (b)
You receive the encrypted message: 100 Decrypt the message. (In
other words, what was the original message, before it was
encrypted? Just give me a number, don’t convert it to letters).

Write public and private key where p = 13, q = 37 and
n = 481. Totient is 432. E is 19 and d is 91. Write public key as
(n = , e =) and private key as (n = , d =)

1. Dexter wants to set up his own public keys. He chooses p = 23
and q = 37 with e = 5. Answer the following using RSA cryptographic
method: a) Encrypt the message ‘100’ and find the CIPHER number (C)
to be sent. ‘100’ should be taken together as M while computing
encryption [5 Marks] C = Me mod pq (Use This Formula) b) Find the
decryption key ‘d’, using extended Euclidean GCD algorithm. [10
Marks] c) Now decrypt...

Aggregating preferences for private and public goods
a. Suppose Johns demand for tacos is P=6-Q and Annas demand is
P=6-2Q. Write down an equation for the social marginal benefit as a
function of Q [i.e. SMB=P=f(Q)] of taco consumption. If the
marginal cost of producing each taco constant at $2 per taco, what
is the socially optimal number of tacos produced and consumed?
b. Now, suppose Johns demand for fighter jets is
P=$10,000,000-(2,000,000*Q) and Annas is
P=$5,000,000-(1,000,000*Q). Derive the social...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 40 minutes ago

asked 42 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago