Question

Suppose an array A stores n integers, each of which is in {0, 1, 2, ...,...

Suppose an array A stores n integers, each of which is in {0, 1, 2, ..., 99}. Which of the following sorting algorithms can sort A in O(n) time in the worst case?

Question 16 options:

A)

merge sort

B)

counting sort

C)

quicksort

D)

None of these options is correct.

E)

insertion sort

Homework Answers

Answer #1

D) None of these options is correct

As for the comparison just look at the following table which shows the whole scenario of sorting algorithm time complexity of worst-case time complexity column for each sorting algorithm.

Algorithm Data structure Time complexity:Best Time complexity:Average Time complexity:Worst Space complexity:Worst
Quick sort Array O(n log(n)) O(n log(n)) O(n2) O(n)
Merge sort Array O(n log(n)) O(n log(n)) O(n log(n)) O(n)
Insertion sort Array O(n) O(n2) O(n2) O(1)
Count Sort Array Ω(N + k) Θ(N + k) O(N + k) O(k=n)

Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose you need to sort 10 million integers, each in the range 0 to 240. How...
Suppose you need to sort 10 million integers, each in the range 0 to 240. How would you do it? Which of the following method gives the smallest tilde time complexity and why? a) Insertion sort b) Mergesort c) Quicksort d) LSD radix sort e) Key-indexed counting sort
#data structures Give the appropriate execution time efficiency of the following array algorithms using Big-O notation....
#data structures Give the appropriate execution time efficiency of the following array algorithms using Big-O notation. Assume the size of the array is n. a)   Linear Search (average case)   ______________________    b)   Binary Search (worst case)       ______________________    c)   Insertion Sort (best case)       ______________________    d)   Insertion Sort (average case)           ______________________    e)   Quick Sort (average case)           ______________________
out of the following four: 1.Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort a. Which...
out of the following four: 1.Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort a. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is random? b. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is 90% sorted? c. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is reverse sorted? d. Which sorting methods perform best and...
1.) Generate an array of 10 random numbers between 1 - 100 2.) Copy the array...
1.) Generate an array of 10 random numbers between 1 - 100 2.) Copy the array to a temp array 3.) Call each of the methods to sort (bubble, selection, insertion, quick, merge), passing it the array 4.) In-between the calls, you are going to refresh the array to the original numbers. 5.) Inside of each sorting method, you are going to obtain the nanoseconds time, before and after the method Subtract the before time from the after time to...
Let mixsort(A, 1, n) be an algorithm that sorts an array A with n integers. It...
Let mixsort(A, 1, n) be an algorithm that sorts an array A with n integers. It works as follows: mixsort(A, p, q){ if p ≥ q, return; r=partition(A, p, q); //run mixsort on the low part mixsort(A, p, r − 1); //run insert sort on the high part insertsort(A, r + 1, q); } Compute the best-case, worst-case, and average-case complexities of mixsort.
Implement functions for insertion sort, quicksort, heapsort and merge sort that input an array of integers...
Implement functions for insertion sort, quicksort, heapsort and merge sort that input an array of integers and sort it in-place. Write a program that generates random integer arrays (hint: use seed appropriately to avoid generating same sequences) of lengths 10, 100, 1000, 10,000, 100,000, 1000,000, and then sorts each using each of the sorting functions from (a), and measures the time in nanoseconds. The program will repeat this process 30 times and will compute the average execution time for each...
Determine wether the statements are true or false 1. Suppose we have f(n) = nlgn ,...
Determine wether the statements are true or false 1. Suppose we have f(n) = nlgn , g(n) = 5n , then f(n) = O(g(n)). 2. Suppose we have f(n) = nn/4 , g(n) = n1/2lg4n , then f(n) = O(g(n)). 3. No comparison-based sorting algorithm can do better than Ω(n log n) in the worst-case 4. Quicksort running time does not depend on random shuffling.
Let A[1, . . . , n] be an array of n distinct numbers. If i...
Let A[1, . . . , n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A. 1. Which arrays with distinct elements from the set {1, 2, . . . , n} have the smallest and the largest number of inversions and why? State the expressions exactly in terms of n. 2. For any 0 < a < 1/2, construct an array for...
Given an array, A, of n−2 unique integers in the range from 1 to n, describe...
Given an array, A, of n−2 unique integers in the range from 1 to n, describe an O(n)-time method for finding the two integers in the range from 1 to n that are not in A. You may use only O(1) space in addition to the space used by A.
Recall the 2-sum problem which took an array of N integers and determined the number of...
Recall the 2-sum problem which took an array of N integers and determined the number of pairs that summed to 0. Now consider a 2-sum BST problem. Let B be a binary search tree with N integers as unique keys. Using only data structures and algorithms that have been discussed in this class, describe an algorithm that will return the number of pairs in B that add to 0. Analyze the space and runtime of your algorithm.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT