Question

Suppose you toss a coin until head shows up where P(H) = p. Let X be...

Suppose you toss a coin until head shows up where P(H) = p. Let X be the total number of tosses. Find the probability that X is an odd integer.

Homework Answers

Answer #1

Here, n =0,1,2....

n+1 is the number of trial.

If n=0 that is at first trial,

Probability of getting head is p.

If n=1 that is at second trial,

Probability of getting head is p*(1-p)*(1-p).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q1. Let p denote the probability that the coin will turn up as a Head when...
Q1. Let p denote the probability that the coin will turn up as a Head when tossed. Given n independent tosses of the same coin, what is the probability distribution associated with the number of Head outcomes observed? Q2. Suppose you have information that a coin in your possession is not a fair coin, and further that either Pr(Head|p) = p is certain to be equal to either p = 0.33 or p = 0.66. Assuming you believe this information,...
5. If you toss a coin 10 times, you got 8 head out of ten tosses....
5. If you toss a coin 10 times, you got 8 head out of ten tosses. What is the probability of this event if the coin is fair (P[X=8|Coin=normal], X is a random variable representing number of head out of ten tosses)? What is the probability of this event if the coin is fake( P[X=8|Coin=fake])?
A coin is tossed repeatedly; on each toss, a head is shown with probability p or...
A coin is tossed repeatedly; on each toss, a head is shown with probability p or a tail with probability 1 − p. All tosses are independent. Let E denote the event that the first run of r successive heads occurs earlier than the first run of s successive tails. Let A denote the outcome of the first toss. Show that P(E|A=head)=pr−1 +(1−pr−1)P(E|A=tail). Find a similar expression for P (E | A = tail) and then find P (E).
Suppose we toss a biased coin independently until a random time N independent of the outcomes...
Suppose we toss a biased coin independently until a random time N independent of the outcomes of the tosses. Where N takes values 1,2,3 with probability 0.3, 0.5, 0.2. Find E(X1 + ··· XN) where Xi = 1 if head-on i th toss with probability 0.55 and zero otherwise, (for i = 1, ··· , N).
In a sequential experiment we first flip a fair coin. If head (event H) shows up...
In a sequential experiment we first flip a fair coin. If head (event H) shows up we roll a fair die and observe the outcome. If tail (event T) shows up, we roll two fair dice. Let X denote the number of sixes that we observe. a) What is the sample space of X? b) Find the PMF of X and E[X]. c) Given that X = 1, what is the probability that head showed up in the flip of...
A fair coin is tossed until a head is obtained. What is the probability that the...
A fair coin is tossed until a head is obtained. What is the probability that the number of tosses required is an odd number?
We toss n coins and each one shows up heads with probability p, independent of the...
We toss n coins and each one shows up heads with probability p, independent of the other coin tosses. Each coin which shows up heads is tossed again. What is the probability mass function of the number of heads obtained after the second round of coin tossing?
You have a coin that has a probability p of coming up Heads. (Note that this...
You have a coin that has a probability p of coming up Heads. (Note that this may not be a fair coin, and p may be different from 1/2.) Suppose you toss this coin repeatedly until you observe 1 Head. What is the expected number of times you have to toss it?
a coin flips to show head with probability p. the coin is flipped until head occurs....
a coin flips to show head with probability p. the coin is flipped until head occurs. find the expected number of flips.
A biased coin is tossed repeatedly. The probability of getting head in any particular toss is...
A biased coin is tossed repeatedly. The probability of getting head in any particular toss is 0.3.Assuming that the tosses are independent, find the probability that 3rd head appears exactly at the 10th toss.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT