Question

Consider a first-order reaction, requiring 50% reaction in the concentration. Would a plug-flow or a CMFR...

Consider a first-order reaction, requiring 50% reaction in the concentration. Would a plug-flow or a CMFR reactor require the least volume? Estimate the difference in terms of volume ? [Hint: Q = V/t]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a first-order reaction, requiring 50% reaction in the concentration. Would a plug-flow or a CMFR...
Consider a first-order reaction, requiring 50% reaction in the concentration. Would a plug-flow or a CMFR reactor require the least volume? Estimate the difference in terms of volume. [Hint: Q = V/t]
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
The first-order reaction A--->B is carried out in a tubular reactor in which the volumetric flow...
The first-order reaction A--->B is carried out in a tubular reactor in which the volumetric flow rate is constant. deduce an equation that relates the volume of the reactor with the input and output concentrations of A, the velocity constant k and the volumetric flow rate. determine the volume of the reactor necessary to reduce the output concentration to 1% of the input concentration, when the volumetric flow rate is 10 dm ^ 3 / min and the specific reaction...
With NEAT sketches, provide all possible alternative reactor combinations that would achieve the same treatment efficiency...
With NEAT sketches, provide all possible alternative reactor combinations that would achieve the same treatment efficiency (90 % removal) of: A Plug flow reactor followed by a CFSTR reactor of equal volume (V) If the kinetics of the chemical reaction is first order, k and flow rate is Q. Support your suggestions with necessary calculations? and Provide volumes as a function of V above.
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has...
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has a diameter of 6 inches and cross-sectional area of 0.0388 ft2: A --> B + C. The reaction rate depends only on the concentration of A, CA, and has the following form: rate of destruction of A = k * CA , where k= 0.12 s-1. The feed consists of pure A, and enters the reactor at a volumetric flowrate of 0.193 ft3/s. Determine...
Consider the CSTR with first order reaction and the process parameters and variables are given by:...
Consider the CSTR with first order reaction and the process parameters and variables are given by: The process parameters and variables are defined as: CA0 = feed concentration = 2.7 mol/L. Cp = heat capacity of the reactor feed and product (1000 cal/kg*K) = Cv. E/R = normalized activation energy (20,000 K). F = mass feed rate and product rate (10 kg/s). k0 = rate constant (1.97×10^24 1/s). Q = heat addition rate (initially 700,000 cal/s). T0 = feed temperature...
The reversible first-order gas reaction ??? is to be carried out in a mixed flow reactor....
The reversible first-order gas reaction ??? is to be carried out in a mixed flow reactor. For operations at 300 K the volume of reactor required is 100 liters for 60% conversion of A. 4.1. What is the value of the reverse rate constant at 300K? 4.2. What is the equilibrium conversion at 300 K? 4.3. What is the equilibrium conversion at 400 K? 4.4. What should be the volume of the reactor for the same feed rate and conversion...
The elementary reaction: A+B to R+S is run in a set-up consisting of a mixed flow...
The elementary reaction: A+B to R+S is run in a set-up consisting of a mixed flow reactor into which the two reactant solutions are introduced followed by a plug flow reactor. A large enough excess of B is used, so that the reaction is first order in respect to A. Various ways of increasing production have been suggested, one of which is to reverse the order of the two units. How would this change affect conversion?
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14...
An isothermal CSTR with a first order irreversible reaction A —> B and rA = 0.14 mol/(ft3*min) has a constant flow rate of 11 f3/min. The reactor volume is 100 ft3. The inlet concentration CAi changes from 6 to 5.5 moles/ft3 (a step change). (a) Determine the process time constant. (b) Determine the steady state gain.
Task # 3 the first order reaction A → B, with –rA = kCA, takes place...
Task # 3 the first order reaction A → B, with –rA = kCA, takes place in a liquid phase in a CSTR reactor witha volume of 10 l. The velocity constant k equals 2.5 min-1 CA=0.0672 mol/L 3.2 There is an operating accident where the feed flow with A is interrupted and the concentration of A drops to 0 inreactor. How long will it take for the feed to resume (ν0 = 0.12 l / s, CA0 = 0.3mol...