Question

The reversible first-order gas reaction ??? is to be carried out in a mixed flow reactor....

The reversible first-order gas reaction ??? is to be carried out in a mixed flow reactor. For operations at 300 K the volume of reactor required is 100 liters for 60% conversion of A. 4.1. What is the value of the reverse rate constant at 300K? 4.2. What is the equilibrium conversion at 300 K? 4.3. What is the equilibrium conversion at 400 K? 4.4. What should be the volume of the reactor for the same feed rate and conversion but with operations at 400 K? 4.5. How much heat must be removed from the reactor in question 4.1 in order for it to be isothermal? Data: The forward rate constant k1= 103 exp(-2416/T) ?Cp = CPR - CpA = 0 ?Hrxn = -8000 cal/mol at 300 K Keq = 10 at 300 K Feed consists of pure A Total pressure stays constant

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
The first-order reaction A--->B is carried out in a tubular reactor in which the volumetric flow...
The first-order reaction A--->B is carried out in a tubular reactor in which the volumetric flow rate is constant. deduce an equation that relates the volume of the reactor with the input and output concentrations of A, the velocity constant k and the volumetric flow rate. determine the volume of the reactor necessary to reduce the output concentration to 1% of the input concentration, when the volumetric flow rate is 10 dm ^ 3 / min and the specific reaction...
Consider the CSTR with first order reaction and the process parameters and variables are given by:...
Consider the CSTR with first order reaction and the process parameters and variables are given by: The process parameters and variables are defined as: CA0 = feed concentration = 2.7 mol/L. Cp = heat capacity of the reactor feed and product (1000 cal/kg*K) = Cv. E/R = normalized activation energy (20,000 K). F = mass feed rate and product rate (10 kg/s). k0 = rate constant (1.97×10^24 1/s). Q = heat addition rate (initially 700,000 cal/s). T0 = feed temperature...
A perfectly mixed flow reactor is to be used to carry out the exothermic isomerisation reaction...
A perfectly mixed flow reactor is to be used to carry out the exothermic isomerisation reaction A -> R. The rate is given by: (-rA) = kCA (1st order) where k = 4 × 106e-8000/T s-1, where T is in K. The enthalpy of reaction ?HR = -167,480 kJ kmol-1 The molecular mass MA (=MR) = 100 kg kmol-1 CA0 initial concentration of A = 1 kmol m-3 For a temperature of 100°C and a production rate of R of...
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has...
The following gas-phase reaction takes place in a plug flow reactor (a tubular reactor) that has a diameter of 6 inches and cross-sectional area of 0.0388 ft2: A --> B + C. The reaction rate depends only on the concentration of A, CA, and has the following form: rate of destruction of A = k * CA , where k= 0.12 s-1. The feed consists of pure A, and enters the reactor at a volumetric flowrate of 0.193 ft3/s. Determine...
The elementary gas phase reaction A + B C is to be carried out isothermally in...
The elementary gas phase reaction A + B C is to be carried out isothermally in a continuous reactor. Reactants are entering with a stoichiometric proportions at 10 atm and 130°C molar flow rate of 20 mol/min. The exit conversion is 90%. The following data was collected from experimental work T, K kA (min-1) 360 5.38 368 8.35 376 12.73 385 16.34 395 21.23 410 28.61 425 33.81 Estimate the rate constant and the activation energy Calculate the required volume...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400...
The irreversible gas-phase reaction A + B ----> C is carried out in an isothermal (400 C) constant-pressure (1 atm) batch reactor in the presence of inerts (I). The initial gas composition in mole fractions is given by yA0 = 0.40; yB0 = 0.40; yC0 = 0.10; yI = 0.10. The reaction is first-order both in A and in B with a rate constant, k = 3.46 x10-2 dm3mol-1 s-1 at 400 C. (a) Set up a stoichiometric table. (b)...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in a flow system with reaction constant,k= 0.07 dm^3mol-1min-1at 300K. The concentrations of each feed stream of A and B is 2 mol dm-3. The volumetric flow rate of each feed stream is 5 dm^3min-1. The two steams are mixed immediately prior to entering the reactor system. This flow system is conducted at 300K with two reactors: a 200 dm^3 stainless steel CSTR and an...
Part I The elementary gas phase reaction (CH3)3COOC(CH3)3 --> C2H6 + 2CH3COCH3 is carried out isothermally...
Part I The elementary gas phase reaction (CH3)3COOC(CH3)3 --> C2H6 + 2CH3COCH3 is carried out isothermally in a flow reactor. The reaction rate constant at 500C is 1x10-4 min-1 and the activation energy is 85 kJ/mol. Pure di-tert-butyl peroxide enters the reactor at 10 atm and 127oC and a molar flowrate of 2.5 mol/min. Calculate the reactor volume and space time to achieve 90% conversion in; a) PF reactor b) CSTR reactor c) Propose the diameter (Dt) and length (L)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT