Question

1) When you invert the buret in the beaker, the water level in the beaker will...

1) When you invert the buret in the beaker, the water level in the beaker will be much lower than that of buret. How come the water in the buret stays in place without emptying into the beaker?

2)Consider the redox reaction:

In+ (aq) + 2Ag+ (aq) -----> In3+ (aq) + 2Ag (s)

what is the equivalent mass of indium in this reaction. show all steps.

Homework Answers

Answer #1

1)

an empty buret is taken

invert it and submerge in the beaker

now

the buret is empty but it has air in it

also

the pressure of air inside the buret is less than the air outside

so

the outside air pushes the water into the buret to balance the pressure

the water flows into the beaker until the pressure of air inside and outside are equal

because of this reason

the water in the buret stays in place without emptying into the beaker

2) consider the given reaction

In+ + 2Ag+ ---> In3+ + 2Ag

now

we know that

equivalent mass = atomic mass / change in oxidation number

from the given reaction

change in oxidation number of indium = 3 - 1 = 2

aslo

we know that

atomic mass of indium = 114.818

so

equivalent mass = 114.818 / 2

equivalent mass = 57.409

so

the equivalent mass of indium in this reaction is 57.409 g /mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SETUP In today’s lab we will measure specific heat using a calorimeter. A calorimeter consist of...
SETUP In today’s lab we will measure specific heat using a calorimeter. A calorimeter consist of a small metal cup inside a larger metal container, with a lid.  The cups are thermally separated from each other by means of air and a wooden ring, thus reducing the thermal conduction to a minimum. To keep track of how much water etc. we have, the whole calorimeter will be placed on a digital scale. Make sure to zero the scale before you place...
Procedure Experiment 1: Standardize an NaOH Solution Using Benzoic Acid as Primary Standard Part 1: Prepare...
Procedure Experiment 1: Standardize an NaOH Solution Using Benzoic Acid as Primary Standard Part 1: Prepare the NaOH Solution Take a 250 mL volumetric flask from the Containers shelf and a balance from the Instruments shelf and place them on the workbench. Zero the mass of the volumetric flask on the balance. Take sodium hydroxide from the Materials shelf and add 1 g to the flask. Record the mass from the balance display. Place the volumetric flask on the workbench....
SECTION 1: True (T) or False (F) 1. _____ When an electron emits energy in the...
SECTION 1: True (T) or False (F) 1. _____ When an electron emits energy in the form of light, it drops from a higher energy level to a lower energy level. 2. _____ When a white solid is dissolved in a beaker containing room-temperature water, the solution becomes hot. This is an example of an endothermic reaction. 3. _____ The Lewis structure of NO2 is an exception to the octet rule. 4. _____ For any form of visible light, the...
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the...
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the Cl- ions be remove from CaCO3 after synthesis? I should answer the questions from the following experiment but if you know the answer and you are sure, yo do not need to read experiment. Please answer correctly because i hav no chance to make wrong :(((( Physical and Chemical Properties of Pure Substances Objective The aim of today’s experiment is to learn handling chemicals...
1.) You will work with 0.10 M acetic acid and 17 M acetic acid in this...
1.) You will work with 0.10 M acetic acid and 17 M acetic acid in this experiment. What is the relationship between concentration and ionization? Explain the reason for this relationship 2.) Explain hydrolysis, i.e, what types of molecules undergo hydrolysis (be specific) and show equations for reactions of acid, base, and salt hydrolysis not used as examples in the introduction to this experiment 3.) In Part C: Hydrolysis of Salts, you will calibrate the pH probe prior to testing...
Procedure Reaction 1: Dissolving the Copper 1. Obtain a clean, dry, glass centrifuge tube. 2. Place...
Procedure Reaction 1: Dissolving the Copper 1. Obtain a clean, dry, glass centrifuge tube. 2. Place a piece of copper wire in a weighing paper, determine the mass of the wire and place it in the centrifuge tube. The copper wire should weigh less than 0.0200 grams. 3. In a fume hood, add seven drops of concentrated nitric acid to the reaction tube so that the copper metal dissolves completely. Describe your observations in the lab report. (Caution, Concentrated nitric...
Question 1 In this question we undertake the Hydrogen Atom Model, developed in 1913 by Niels...
Question 1 In this question we undertake the Hydrogen Atom Model, developed in 1913 by Niels Bohr. a) Write the electric force reigning between the proton and the electron, in the hydrogen atom, in CGS system. Then equate this force, with the force expressed in terms of mass and acceleration, to come up with Bohr's equation of motion. Suppose that the electron orbit, around the proton, is circular. Use the following symbols, throughout. e: proton's or electron's charge intensity(4.8x 10-8...
1) There are two naturally occurring types of copper, ^63Cu (62.92960 u) and ^65Cu (64.92780 u)....
1) There are two naturally occurring types of copper, ^63Cu (62.92960 u) and ^65Cu (64.92780 u). a) Given that the atomic weight of copper is 63.546 u, what are the natural abundances of ^63Cu and ^Cu? b) What makes ^63Cu different from ^65Cu. Be specific!! c)Which copper is regular copper and which one is the isotope? 2) Consider the following questions a) Light takes 8 minutes and 19 seconds to reach from the sun to the earth. The speed of...
1. Given the following reaction     2C2H6(l)   +      7 O2(g)   ®           4CO2(g)      +     
1. Given the following reaction     2C2H6(l)   +      7 O2(g)   ®           4CO2(g)      +        6H2O(l) How many moles of water are produced when 4.5 moles of oxygen react?        (Hint: Use slides 5-8) 2. Given: I2     +    3 F2      ®     2 IF3 How many moles of I2 are needed to form 3 moles of IF3? How many moles of F2 are needed to form 10 moles of IF3? How many moles of I2 are needed to react with 3.5 moles of F2?        ...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...