Question

The standard Gibbs free energy of formation of ________ is zero. (a) Ba(s) (b) N2(g) (c)...

The standard Gibbs free energy of formation of ________ is zero. (a) Ba(s) (b) N2(g) (c) Cs(s) The standard Gibbs free energy of formation of ________ is zero. (a) (b) (c) (a) only (b) only (c) only (b) and (c) (a), (b), and (c)

Homework Answers

Answer #1

Dear student,

All of them have zero standard Gibbs free energy of formation.

Please give a positive ratings to this answer.

And stay safe...

With regards....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Identify the compound with the standard free energy of formation equal to zero. A) NaCl(s) B)...
Identify the compound with the standard free energy of formation equal to zero. A) NaCl(s) B) N2(g) C) NO(g) D) O3(g) E) It is hard to determine. I know the answer is B,but don't understand why. Please explain!
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity...
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS where H is enthalpy, T is temperature, and S is entropy. The chemical reaction that causes aluminum to corrode in air is given by 4Al+3O2→2Al2O3 in which at 298 K ΔH∘rxn = −3352 kJ ΔS∘rxn = −625.1 J/K Part A What is...
The standard free energy of formation of KBr(s) is –380.4 kJ/mol.  What is delta G° for the...
The standard free energy of formation of KBr(s) is –380.4 kJ/mol.  What is delta G° for the reaction 2KBr(s) --> 2K(s) + Br2(l) ?
Calculate the Gibbs free energy change at 1200°C for the following reaction: MgS (s) + 3/2...
Calculate the Gibbs free energy change at 1200°C for the following reaction: MgS (s) + 3/2 O2 (g) → SO2 (g) + MgO (s)
So I had to calculate the Gibbs Free energy for all the reactions: Ca(s)+CO2(g)+12O2(g)→CaCO3(s) = ΔG∘...
So I had to calculate the Gibbs Free energy for all the reactions: Ca(s)+CO2(g)+12O2(g)→CaCO3(s) = ΔG∘ = -734  kJ   CaCO3(s)→CaO(s)+CO2(g) = 131  kJ CO(g)+H2O(g)→H2(g)+CO2(g) = -28.6 KJ but now I have to predict what lowering the temeprature will do to Gibbs Free Energy: it will decrease with decreasing temp. ΔG∘ will increase with decreasing temperature. ΔG∘ will change slightly with decreasing temperature.
� Gibbs Free Energy: Equilibrium Constant Nitric oxide, NO, also known as nitrogen monoxide, is one...
� Gibbs Free Energy: Equilibrium Constant Nitric oxide, NO, also known as nitrogen monoxide, is one of the primary contributors to air pollution, acid rain, and the depletion of the ozone layer. The reaction of oxygen and nitrogen to form nitric oxide in an automobile engine is N2(g)+O2(g)?2NO(g) The spontaneity of a reaction can be determined from the free energy change for the reaction, ?G?. A reaction is spontaneous when the free energy change is less than zero. A reaction...
Under standard conditions, the free energy of formation (ΔGof) of CO2 ­(g) is -394 kJ/mol. C...
Under standard conditions, the free energy of formation (ΔGof) of CO2 ­(g) is -394 kJ/mol. C (s) + O2 (g) → CO2 (g) Assuming the temperature remains 25 oC and the partial pressure of O2 (g) remains 1 atm, what would be the value of ΔG for this reaction when the partial pressure of CO2 ­(g) is 7.88 x 10-3 atm?
calculate the standard free energy change delta G for reaction N2 (g) +3H2(g)—>2NH3 N2 delta H=0.00kj...
calculate the standard free energy change delta G for reaction N2 (g) +3H2(g)—>2NH3 N2 delta H=0.00kj mol^-1s=+191.5J mol^-1K^-1 H2 delta H=0.00kj mol^-1,s = +130.6j mol^-1 k-1 NH3 delta H=-46.0kj mol^-1,s =192.5 J mol^-1 k-1 A. +112.3 kJ B.-87.6kJ C.-7.4kJ D.-32.9 kJ E.-151.1kJ
The standard free energy of formation of nitric oxide, NO, at 800. K (roughly the temperature...
The standard free energy of formation of nitric oxide, NO, at 800. K (roughly the temperature in an automobile engine during ignition) is 72.0 kJ/mol. Δf H (N2) and Δf H (O2) =0. Calculate the equilibrium constant for the reaction: N2(g) + O2(g) => 2NO(g) at 800. K. (R = 8.31 J/(K · mol)) 2NO(g) a. 7.0 x 10^–10 b. 7.0 x 10^–9 c. 4 x 10^-10 d. 4 x 10^5 e. 6.8 x 10^–6
Given the following information, calculate the standard Gibbs free energy of the reaction at 1455 K....
Given the following information, calculate the standard Gibbs free energy of the reaction at 1455 K. State if the reaction is spontaneous or nonspontaneous followed by the temperature at which the reaction switches spontaneity if applicable. CaCO3(s) --> CaO(s) + CO2(g) Given: Δ°H = 179.2 kJ , Δ°S = 160.2 J/K