Question

The standard free energy of formation of KBr(s) is –380.4 kJ/mol.  What is delta G° for the...

The standard free energy of formation of KBr(s) is –380.4 kJ/mol.  What is delta G° for the reaction 2KBr(s) --> 2K(s) + Br2(l) ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Under standard conditions, the free energy of formation (ΔGof) of CO2 ­(g) is -394 kJ/mol. C...
Under standard conditions, the free energy of formation (ΔGof) of CO2 ­(g) is -394 kJ/mol. C (s) + O2 (g) → CO2 (g) Assuming the temperature remains 25 oC and the partial pressure of O2 (g) remains 1 atm, what would be the value of ΔG for this reaction when the partial pressure of CO2 ­(g) is 7.88 x 10-3 atm?
calculate the standard free energy change delta G for reaction N2 (g) +3H2(g)—>2NH3 N2 delta H=0.00kj...
calculate the standard free energy change delta G for reaction N2 (g) +3H2(g)—>2NH3 N2 delta H=0.00kj mol^-1s=+191.5J mol^-1K^-1 H2 delta H=0.00kj mol^-1,s = +130.6j mol^-1 k-1 NH3 delta H=-46.0kj mol^-1,s =192.5 J mol^-1 k-1 A. +112.3 kJ B.-87.6kJ C.-7.4kJ D.-32.9 kJ E.-151.1kJ
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9 205.0 Above is a table of thermodynamics date for the chemical species in the reaction: 2HgO(s) ----> 2Hg(g)+ O2(g) at 25 C A) Calculate the molar entropy of reaction at 25 C B) Calculate the standard Gibbs free enregy of the reaction at 25 C given that the enthaply of reaction at 25 C is 304.2 Kj/mol C)Calculate the equilibrium constant for the reaction...
You are given the following data: H2(g) --> 2H(g) Delta H degrees=436.4 kJ/mol Br2(g) --> 2Br(g)...
You are given the following data: H2(g) --> 2H(g) Delta H degrees=436.4 kJ/mol Br2(g) --> 2Br(g) Delta H degrees=192.5 kJ/mol H2(g) + Br2(g) --> 2HBr(g) Delta H degrees=-72.4 kJ/mol Calculate Delta H degrees for the reaction H(g) + Br(g) --> HBr(g)
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl...
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl = 427 kJ/mol Ionization energy of K(g) = 419 kJ/mol Electron affinity of Cl(g) = –349 kJ/mol Lattice energy of KCl(s) = –705 kJ/mol Bond energy of H2 = 432 kJ/mol Calculate the net change in energy for the following reaction: 2K(s) + 2HCl(g) → 2KCl(s) + H2(g) ΔE = ______ kJ
The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard...
The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard molar enthalpy of formation for liquid hydrazine (N2H4)?      N2H4(l) + O2(g) → N2(g) + 2H2O(g)      ΔH° = ‒534.2 kJ    ‒292 kJ/mol     292 kJ/mol     ‒146 kJ/mol 50.6 kJ/mol ‒50.6 kJ/mol
The standard enthalpy of formation of NaCl(s) is fH° = -411.15 kJ mol-1. Write the reaction...
The standard enthalpy of formation of NaCl(s) is fH° = -411.15 kJ mol-1. Write the reaction to which the above standard enthalpy of formation refers. What would be the change in internal energy for this formation reaction at 298.15K and the standard pressure of 1.00 bar pressure?
Data Tables Heats of Formation Compound delta Hf (kJ mol-1) H20 (l) -285.83 CO2 (g) -391.51...
Data Tables Heats of Formation Compound delta Hf (kJ mol-1) H20 (l) -285.83 CO2 (g) -391.51 Bond Enthalpies Reaction delta H (298K) C(s, graphite) to C(g) 716.7 H-H to 2H(g) 436 C-H to C(g) + H(g) 413 C-C to 2C(g) 348 *****For the word "to" it means arrow, or reacts to form this (not able to put an arrow on here) a) If the standard enthalpy of combustion of gaseous cyclopropane, C3H6, is -2091.2kJ mol-1 at 25 C, calculate the...
a) Determine the mass (in grams) of bromine that will result in a change in energy...
a) Determine the mass (in grams) of bromine that will result in a change in energy of -2.58 kJ when bromine reacts with excess potassium iodide according to the following balanced thermochemical equation: 2KI(s) + Br2(l) → 2KBr(s) + I2(s)  ΔHr° = -131.80 kJ b) Using the enthalpies of formation given below, Calculate the amount of heat absorbed/released (in kJ) when 8.39 grams of SO2 are produced via the above reaction. 2H2S(g) + 3O2(g) → 2SO2(g) + 2H2O(l) H2S (g): -20.60...
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal...
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal mol–1) at 298 K. Reaction B is ten million times faster than reaction A at the same temperature. The products of each reaction are 10.0 kJ mol–1 (2.39 kcal mol–1) more stable than the reactants. (a) What is the standard free energy of activation of reaction B? (b) What is the standard free energy of activation of the reverse of reaction A? (c) What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT