Question

Using the Rydberg formula, calculate the initial energy level when an electron in a hydrogen atom...

Using the Rydberg formula, calculate the initial energy level when an electron in a hydrogen atom transitions into n=2 and emits a photon at 410.1 nm. Note: the Rydberg constant = 1.097 x 107 m-1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is...
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is -2.179×10-18 J. What is the energy of the electron in level n=5? -8.716×10-20 J 2.The electron in a hydrogen atom moves from level n=6 to level n=4. a) Is a photon emitted or absorbed? b) What is the wavelength of the photon?
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
Which is greater:      The energy of a photon emitted from a hydrogen atom when the electron...
Which is greater:      The energy of a photon emitted from a hydrogen atom when the electron makes a transition from the n = 3 to the n = 1 energy level, or • the kinetic energy of a 2 gram Ping-Pong ball moving with a speed of 1 m per hour?
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron drops from the n = 4 to n = 2 state. Consider the following energy levels of a hypothetical atom: E4 −1.61 × 10−19 J E3 −7.51 × 10−19 J E2 −1.35 × 10−18 J E1 −1.45 × 10−18 J (a) What is the wavelength of the photon needed to excite an electron from E1 to E4? ____ ×10m (b) What is the energy...
What is the emission wavelength for an electron falling from the vacuum level (n=∞) to the...
What is the emission wavelength for an electron falling from the vacuum level (n=∞) to the lowest energy level in a hydrogen atom? Use the Rydberg equation and the numerical values for the Rydberg constant Rh given above. In which part of the electromagnetic spectrum is this? RH =2.17868891 x 10^–18 J = 1.09677759 x 107 m^–1
6. a) For a hydrogen atom, if the emission energy associated when the electron starts at...
6. a) For a hydrogen atom, if the emission energy associated when the electron starts at n = 8 is 2.65 x 10-20 J, at what energy level does the photon finish at? b) What type of electromagnetic radiation is associated with this change
An electron in an excited state of a hydrogen atom emits two photons in succession, the...
An electron in an excited state of a hydrogen atom emits two photons in succession, the first at 3037 nm and the second at 94.92 nm, to return to the ground state (n=1). For a given transition, the wavelength of the emitted photon corresponds to the difference in energy between the two energy levels. What were the principal quantum numbers of the initial and intermediate excited states involved?
An electron in a hydrogen atom undergoes a transition from the n = 6 level to...
An electron in a hydrogen atom undergoes a transition from the n = 6 level to some lower energy level. In doing so, energy is released in the form of light. a) Calculate the frequency in s-1 (to 3 significant figures) of a photon of light associated with the highest frequency transition (i.e. largest difference in frequency) possible from the n = 6 to a lower level. (HINT: Try drawing a picture first…) b) Calculate the wavelength (in nm) of...
1) An electron in the hydrogen atom drops from the n=5 level to the n=1 level....
1) An electron in the hydrogen atom drops from the n=5 level to the n=1 level. What are the frequency, wavelength, and energy of the emitted photon? In which series does this photon occur? How much energy must be absorbed by the atom in order to kick the electron back up to the fifth level? 2) Calculate the maximum wavelength for the initiation of a photoelectric current in the aluminum (work function W = 4.28 eV).