Question

What is the emission wavelength for an electron falling from the vacuum level (n=∞) to the...

What is the emission wavelength for an electron falling from the vacuum level (n=∞) to the lowest energy level in a hydrogen atom? Use the Rydberg equation and the numerical values for the Rydberg constant Rh given above. In which part of the electromagnetic spectrum is this?

RH =2.17868891 x 10^–18 J = 1.09677759 x 107 m^–1

Homework Answers

Answer #1

wavenumber = 1.09677759 * 10^7 (1/n1^2-1/n2^2)

                    = 1.09677759 * 10^7*((1/1^2)-(1/infinity^2))

                    = 1.09677759 * 10^7   m-1.

wavelength = 1/wavenumber = 1/(1.09677759 * 10^7) = 9.12*10^-8 m

                  =   91.2 nm

present in Ultraviolet region.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is...
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is -2.179×10-18 J. What is the energy of the electron in level n=5? -8.716×10-20 J 2.The electron in a hydrogen atom moves from level n=6 to level n=4. a) Is a photon emitted or absorbed? b) What is the wavelength of the photon?
Using the Rydberg formula, calculate the initial energy level when an electron in a hydrogen atom...
Using the Rydberg formula, calculate the initial energy level when an electron in a hydrogen atom transitions into n=2 and emits a photon at 410.1 nm. Note: the Rydberg constant = 1.097 x 107 m-1
6. a) For a hydrogen atom, if the emission energy associated when the electron starts at...
6. a) For a hydrogen atom, if the emission energy associated when the electron starts at n = 8 is 2.65 x 10-20 J, at what energy level does the photon finish at? b) What type of electromagnetic radiation is associated with this change
Q1) Calculate the energy of an electron in the n = 2 level of a hydrogen...
Q1) Calculate the energy of an electron in the n = 2 level of a hydrogen atom. Energy = _______Joules Q2) What would be the wavelength of radiation emitted from a hydrogen atom when an electron moves from the n = 2 to n = 1energy level? In what region of the spectrum does this radiation lie? Wavelength = ________nm Region = _________(ultraviolet or visible or infrared)
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron drops from the n = 4 to n = 2 state. Consider the following energy levels of a hypothetical atom: E4 −1.61 × 10−19 J E3 −7.51 × 10−19 J E2 −1.35 × 10−18 J E1 −1.45 × 10−18 J (a) What is the wavelength of the photon needed to excite an electron from E1 to E4? ____ ×10m (b) What is the energy...
The emission spectrum of hydrogen has a line at a wavelength of 922.6nm. A) Calculate the...
The emission spectrum of hydrogen has a line at a wavelength of 922.6nm. A) Calculate the energy change for the electron transition that corresponds to this line. B) This line is actually in the Paschen series. What are the initial and final values of n for the electron transition that corresponds to this line?
A photon is incident on a hydrogen atom. The photon moves the electron from an n...
A photon is incident on a hydrogen atom. The photon moves the electron from an n = 5 energy level to an n = 10 energy level. A: Is this an absorption or emission process? Choose one. B: What is the wavelength, in nanometers, of the incident photon?
For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that...
For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that results from the transition n = 3 to n = 1. The Rydberg constant is 2.18 x 10^-18 J.
(a)What equation gives the wavelength of a particle? (b) What equation gives the energy of the...
(a)What equation gives the wavelength of a particle? (b) What equation gives the energy of the n=4 level of the hydrogen atom? In your equation write RH as RH. (c) What is the equation for the frequency of light when the Hydrogen atom makes a transition from n=4 to n=2? Evaluate everything but RH and h. Thank you so much!
If a hydrogen atom is excited from an n=1 state to an n=4 state, how much...
If a hydrogen atom is excited from an n=1 state to an n=4 state, how much energy does this correspond to? Is this an absorption or an emission? What is the wavelength of the photon involved in this process? To what region of the electromagnetic spectrum does this correspond?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT