Question

6. a) For a hydrogen atom, if the emission energy associated when the electron starts at...

6.

a) For a hydrogen atom, if the emission energy associated when the electron starts at n = 8 is 2.65 x 10-20 J, at what energy level does the photon finish at?

b) What type of electromagnetic radiation is associated with this change

Homework Answers

Answer #1

Answer:-

This question is solved by using the simple concept of emission spectrum of hydrogen atom using the simple formula energy level is calculated and associated region.

The answer is given in the image,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is...
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is -2.179×10-18 J. What is the energy of the electron in level n=5? -8.716×10-20 J 2.The electron in a hydrogen atom moves from level n=6 to level n=4. a) Is a photon emitted or absorbed? b) What is the wavelength of the photon?
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron drops from the n = 4 to n = 2 state. Consider the following energy levels of a hypothetical atom: E4 −1.61 × 10−19 J E3 −7.51 × 10−19 J E2 −1.35 × 10−18 J E1 −1.45 × 10−18 J (a) What is the wavelength of the photon needed to excite an electron from E1 to E4? ____ ×10m (b) What is the energy...
A photon is emitted from a hydrogen atom when an electron goes from the n =...
A photon is emitted from a hydrogen atom when an electron goes from the n = 6 to the n = 2 state. What kind of electromagnetic radiation is this? Select one: a. Visible Light b. Ultraviolet Light c. Infrared Radiation d. X-Ray Radiation e. Microwave Radiation
A photon is incident on a hydrogen atom. The photon moves the electron from an n...
A photon is incident on a hydrogen atom. The photon moves the electron from an n = 5 energy level to an n = 10 energy level. A: Is this an absorption or emission process? Choose one. B: What is the wavelength, in nanometers, of the incident photon?
The electron in a hydrogen atom is excited to the n = 6 shell and emits...
The electron in a hydrogen atom is excited to the n = 6 shell and emits electromagnetic radiation when returning to lower energy levels. Determine the number of spectral lines that could appear when this electron returns to the lower energy levels, as well as the wavelength range in nanometers.
Light is emitted from a hydrogen atom as an electron in the atom jump from the...
Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. What is the energy of the emitted photon in eV? (b) What are the frequency and wavelength of the photon? (c) In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump...
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. (a) [7] What is the energy of the emitted photon in eV? (b) [4] What are the frequency and wavelength of the photon? (c) [4] In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
What is the emission wavelength for an electron falling from the vacuum level (n=∞) to the...
What is the emission wavelength for an electron falling from the vacuum level (n=∞) to the lowest energy level in a hydrogen atom? Use the Rydberg equation and the numerical values for the Rydberg constant Rh given above. In which part of the electromagnetic spectrum is this? RH =2.17868891 x 10^–18 J = 1.09677759 x 107 m^–1
Using the Rydberg formula, calculate the initial energy level when an electron in a hydrogen atom...
Using the Rydberg formula, calculate the initial energy level when an electron in a hydrogen atom transitions into n=2 and emits a photon at 410.1 nm. Note: the Rydberg constant = 1.097 x 107 m-1