Question

A total of 2.00 mol of a compound is allowed to react with water in a...

A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 128 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water.

Homework Answers

Answer #1

Given values are:

Mass of reactants= 2.00 moles

Mass of solution= 128g

Initial temperature= 21.00 degee C

Final temperature= 24.70 degree C

Change in Temperature(delta T)= 24.70-21.00= 3.70 degree C

Specific heat of Cp= 4.184J/g degree C

Heat generated Q= m*Cp*delta T

= 128*4.184*3.70

= 1981.5424 J

Dividing Q by 1000 we get Q in kJ= 1981.5424/1000= 1.9815 kJ

Change in Enthalphy (delta H)= Q/(no. of moles)

= 1.9815/2= 0.99075 kJ/mol

Since in this reaction heat is released so the reaction is exothermic and delta H is always negative so

delta H= -0.99075

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 168 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water....
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 184 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water....
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 145 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water....
A total of 2.00 mol of a compound is allowed to react with water in a...
A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 159g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ?C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of pure water. Enter...
Part A) A total of 2.00 mol of a compound is allowed to react with water...
Part A) A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 101 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of...
In a coffee-cup calorimeter experiment, 10.00 g of a soluble ionic compound was added to the...
In a coffee-cup calorimeter experiment, 10.00 g of a soluble ionic compound was added to the calorimeter containing 75.0 g H2O initially at 23.2°C. The temperature of the water increased to 31.8°C. What was the change in enthalpy for the dissolution of the compound? Give your answer in units of joules per gram of compound. Assume that the specific heat of the solution is the same as that of pure water, 4.18 J ⁄ (g ⋅ °C).
The enthalpy change for the dissolution of NH4NO3 is +26.8 kJ/mol. When 40.0 g of NH4NO3...
The enthalpy change for the dissolution of NH4NO3 is +26.8 kJ/mol. When 40.0 g of NH4NO3 dissolves in 250.0 g of water in a coffee cup calorimeter, what will the final temperature of a solution be if it was initially at 25.0 °C? Assume that the heat capacity of the solution is the same as the specific heat of pure water, 4.184 J/(g·K). Hint: don't forget to add the masses of solute and solvent.
When 7.56 g of NaCl is added to a coffee cup calorimeter, the water temperature changes...
When 7.56 g of NaCl is added to a coffee cup calorimeter, the water temperature changes by 4.1 ºC. If the heat of solution (the enthalpy change upon dissolving in water) is 3.8 kJ/mol, what mass of solution must be in the cup? Assume the specific heat capacity of the solution is the same as the specific heat capacity of water.
A 2.00 g sample of KCl is added to 35.0 g H2O in a styrofoam cup...
A 2.00 g sample of KCl is added to 35.0 g H2O in a styrofoam cup and stirred until dissolved. The temperature of the solution drops from 24.8 to 21.6 ˚C. Assume that the specific heat and density of the resulting solution are equal to those of water, 4.18 J/(g ˚C) and 1.00 g/mL, respectively and assume that no heat is lost to the calorimeter itself, nor to the surroundings. KCl(s) + H2O(l) --> KCl(aq) ∆H = ? a) Is...
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X...
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X (a substance with a molar mass of 46.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT