Question

Part A A calorimeter contains 25.0 mL of water at 11.5 ∘ C . When 1.20...

Part A A calorimeter contains 25.0 mL of water at 11.5 ∘ C . When 1.20 g of X (a substance with a molar mass of 73.0 g/mol ) is added, it dissolves via the reaction X(s)+ H 2 O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘ C . Calculate the enthalpy change, ΔH , for this reaction per mole of X . Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅ ∘ C) ], that density of water is 1.00 g/mL , and that no heat is lost to the calorimeter itself, nor to the surroundings. Express the change in enthalpy in kilojoules per mole to three significant figures.

Part B Consider the reaction C 12 H 22 O 11 (s)+12 O 2 (g)→12C O 2 (g)+11 H 2 O(l) in which 10.0 g of sucrose, C 12 H 22 O 11 , was burned in a bomb calorimeter with a heat capacity of 7.50 kJ / ∘ C . The temperature increase inside the calorimeter was found to be 22.0 ∘ C . Calculate the change in internal energy, ΔE , for this reaction per mole of sucrose. Express the change in internal energy in kilojoules per mole to three significant figures.

Homework Answers

Answer #1

Mass of the total solution = mass of water + mass of substance = 25ml*1g/ml+1.2= 26.2 gm

From the reaction, enthalpy of neutralization = mass* specific heat* temperature difference= 26.2*4.18*(30-11.5) =2026 joules

This is dues to addition of 1.2 gm of X of molar mass = 73 g/mol, moles of X= 1.2/73=0.0164

Heat of neutralization = 2026/0.0164= 123248.3 Joules

2.

Enthalpy change = specific heat of calorimeter* temperature increase= 7.5*22 KJ=165 KJ

Moles of sucrose = mass/molar mass, molar mass of sucrose(C12H22O11)= 12*12+22+11*16= 342

Moles of sucrose = 10/342= 0.029, enthalpy change= 165/0.029 =5690 Kj/mole

From enthalpy change, deltaH= deltaU+deltanR*T , deltaU= change in internal energy, deltan= change in no of moles of gas = 12-12= 0

5690= deltaU + 0

delltaU= 5690 Kj/mole

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part A A calorimeter contains 21.0 mL of water at 11.0 ∘C . When 1.60 g...
Part A A calorimeter contains 21.0 mL of water at 11.0 ∘C . When 1.60 g of X (a substance with a molar mass of 72.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
Part A A calorimeter contains 35.0 mL of water at 11.0 ∘C . When 1.30 g...
Part A A calorimeter contains 35.0 mL of water at 11.0 ∘C . When 1.30 g of X (a substance with a molar mass of 46.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 29.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X (a substance with a molar mass of 42.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X (a substance with a molar mass of 66.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 29.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
Part A: A calorimeter contains 32.0 mL of water at 12.5 ∘C . When 1.80 g...
Part A: A calorimeter contains 32.0 mL of water at 12.5 ∘C . When 1.80 g of X (a substance with a molar mass of 72.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 27.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
Part A A calorimeter contains 35.0 mL of water at 12.5 ∘C . When 2.10 g...
Part A A calorimeter contains 35.0 mL of water at 12.5 ∘C . When 2.10 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X (a substance with a molar mass of 76.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
Part A) A total of 2.00 mol of a compound is allowed to react with water...
Part A) A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 101 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of...
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X...
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X (a substance with a molar mass of 46.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT