Question

Consider the reaction C6H4(OH)2 (l) + H2O2 (l) ⎯→ C6H4O2 (l) + 2 H2O (l) (a)...

Consider the reaction C6H4(OH)2 (l) + H2O2 (l) ⎯→ C6H4O2 (l) + 2 H2O (l)

(a) Use the following information to calculate ΔH° for the above reaction. Show all work. ΔH° C6H4(OH)2 (l) ⎯⎯→ C6H4O2 (l) + H2 (g) +177.4 kJ H2 (g) + O2 (g) ⎯⎯→ H2O2 (l) -187.8 kJ H2 (g) + € 1 2 O2 (g) ⎯⎯→ H2O (l) -285.8 kJ

(b) Based on your answer to part a, above, would heat be gained or lost by the surroundings as the reaction at the very top of the page occurred at standard conditions?

(c) How many kilojoules of heat are given off when 20.0 g of H2O (l) are produced at standard conditions according to the reaction at the very top of the page? Show all work.

Homework Answers

Answer #1

C6H4(OH)2 (l) --> C6H4O2 (l) + H2 (g)     dhrxn = -177.4 Kj

H2O2 (l) ----> H2 (g) + O2 (g)           dhrxn = +187.8 kj

2H2(g) + O2(g) ----> 2H2O(l)            dhrxn = 2*-285.8 kj

------------------------------------------------------------

C6H4(OH)2 (l) + H2O2 (l) ---> C6H4O2 (l) + 2 H2O (l)

---------------------------------------------------------

dhRXN = (-177.4+187.8+(2*-285.8))

      = -561.2 Kj

As DHrxn is - ve , it is exothermic

c) No of mol of water = 20/18 = 1.11 mol

2mol Water = 561 kj

1.11 mol water =   561*1.11/2 = -311.35 kj

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold...
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold below given the following chemical steps and their respective enthalpy changes. Show ALL work! 2 C(s) + H2(g) → C2H2(g) ΔH°rxn = ? 1. C2H2(g) + 5/2 O2(g) → 2CO2 (g) + H2O (l) ΔH°rxn = -1299.6 kJ 2. C(s) + O2(g) → CO2 (g) ΔH°rxn = -393.5 kJ 3. H2(g) + ½ O2(g) → H2O (l) ΔH°rxn = -285.8 kJ
Given the following thermochemical data: ½H2(g)+AgNO3(aq) → Ag(s)+HNO3(aq) ΔH = -105.0 kJ 2AgNO3(aq)+H2O(l) → 2HNO3(aq)+Ag2O(s) ΔH...
Given the following thermochemical data: ½H2(g)+AgNO3(aq) → Ag(s)+HNO3(aq) ΔH = -105.0 kJ 2AgNO3(aq)+H2O(l) → 2HNO3(aq)+Ag2O(s) ΔH = 44.8 kJ H2O(l) → H2(g)+½O2(g) ΔH = 285.8 kJ Use Hess’s Law to determine ΔH for the reaction: Ag2O(s) → 2Ag(s)+½O2(g)
Given the following information: 2 H2 (g) + O2 (g) → 2 H2O (g) ΔH =...
Given the following information: 2 H2 (g) + O2 (g) → 2 H2O (g) ΔH = −438.6 kJ 3 O2 (g) → 2 O3 (g) ΔH = +284.6 kJ Which is a true statement about the reaction below? 3 H2 (g) + O3 (g) → 3 H2O (g) A) The reaction is exothermic. B) The reaction will not proceed as written. C) Multiplying both sides of the reaction by a factor of 2 will have no effect on the value...
The mechanism for the reaction 2 H2O2(aq) à 2 H2O(l) + O2(g) in the presence of...
The mechanism for the reaction 2 H2O2(aq) à 2 H2O(l) + O2(g) in the presence of I–(aq) is proposed to be: Step 1: H2O2(aq) + I–(aq) à H2O(l) + OI–(aq)                                   (slow) Step 2: H2O2(aq) + OI–(aq) à H2O(l) + O2(g) + I–(aq)                       (fast) What is the rate law for the overall reaction?             a. Rate = k[H2O2]2             b. Rate = k[H2O2][I–]             c. Rate = k[H2O2]2[I–]/[H2O]             d. Rate = k[H2O2][OI–]             e. Rate = k[H2O2]
The reaction 2 H2O2 --> 2 H2O + O2 follows the mechanism: Step 1: H2O2 (aq)...
The reaction 2 H2O2 --> 2 H2O + O2 follows the mechanism: Step 1: H2O2 (aq) + I-(aq) --> H2O(l) + IO-(aq) SLOW    Step 2: IO-(aq) + H2O2(aq) --> H2O(l) + O2(g) + I-(aq) FAST What is the molecularity overall? A. termolecular B. bimolecular C. cannot be determined D. unimolecular
Use the following reaction enthalpies to determine the reaction enthalpy for 2 HCl(g) + F2(g) →...
Use the following reaction enthalpies to determine the reaction enthalpy for 2 HCl(g) + F2(g) → 2 HF(g) + Cl2(g). 4 HCl(g) + O2(g) → 2 H2O(l) + 2 Cl2(g) ΔHrxn = - 202.4 kJ/mol rxn 1/2 H2(g) + 1/2 F2(g) → HF(g) ΔHrxn = - 271.0 kJ/mol rxn H2(g) + 1/2 O2(g) → H2O(l) ΔHrxn = - 285.8 kJ/mol rxn
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g)...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g) → CO2(g) ΔH° = -394.0 kJ 2CO2(g) + H2O(l) → C2H2(g) + 5/2O2(g) ΔH° = 1300.0 kJ Calculate ΔH° for the reaction: 2C(s) + H2(g) → C2H2(g)
From the following data calculate the ΔHrxn for the following reaction: 2 C(s) + 2 H2O(g)...
From the following data calculate the ΔHrxn for the following reaction: 2 C(s) + 2 H2O(g)  CH4(g) + CO2(g) ΔHrxn = ________ Use the following reactions and given ΔH’s and show your work. CO(g) + H2(g) → C(s) + H2O(g) ΔHrxn = −131.3 kJ CO(g) + H2O(g) → CO2(g) + H2(g) ΔHrxn = −41.2 kJ CO(g) + 3 H2(g) → CH4(g) + H2O(g) ΔHrxn = −206.1 kJ
Using the Information below determine the change in enthalpy for the following reaction: 2NO (g) +...
Using the Information below determine the change in enthalpy for the following reaction: 2NO (g) + 5H2 (g)!2NH3 (g) + 2H2O (l) H2 (g) + 1⁄2O2 (g)!H2O (l) ΔH° = -285.8 kJ N2 (g) + O2 (g)!2NO (l) ΔH° = +180.5 kJ 2NH3 (g)!N2 (g) + 3H2 (g)ΔH° = +92.22 kJ a)-197.52 kJ b)-241.7 kJ c)-483.3 kJ d)-659.88 kJ e)-844.3 kJ please show me which equation is first second and thrid and reason why? i may be taking the wrong...
solution is made by dissolving 20.0 g of magnesium metal in enough water to form magnesium...
solution is made by dissolving 20.0 g of magnesium metal in enough water to form magnesium hydroxide and hydrogen at constant pressure of 785 torr and 25.0 °C according to the following unbalanced chemical reaction: Mg(s) + H2O (l) → Mg(OH)2 (aq) + H2 (g) Compound ∆H°f (kJ/mole) Mg(OH)2 (aq) -924.5 H2O(l) -285.8 H2(g) 0.00 Mg(s) 0.00 Calculate ∆H° of the reaction in kJ/mol Mg. Calculate ∆H° of the reaction in kJ/gram of Mg If the initial volume of the...