Question

Explain the effect a decrease in concentration of a reactant would have on the average rate...

Explain the effect a decrease in concentration of a reactant would have on the average rate of reaction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How does collision theory explain the effect of concentration on reaction rate? The reaction rate depends...
How does collision theory explain the effect of concentration on reaction rate? The reaction rate depends on the sum of the reactant concentrations. The reaction rate depends on the sum of the product concentrations. The reaction rate depends on the product of the product concentrations. The reaction rate depends on the product of the reactant concentrations.
Explain why: A) doubling the concentration of a reactant does not always double the rate of...
Explain why: A) doubling the concentration of a reactant does not always double the rate of the reaction B) decreasing the container size for a gas phase reaction usually increases the rate for a gas phase reaction C) adding a catalyst increases the rate of the reaction
1A. For a first order reaction, the rate will double if a.      Concentration of a reactant...
1A. For a first order reaction, the rate will double if a.      Concentration of a reactant is doubled b.     Concentration of a product is doubled c.      Concentration of a reactant is squared d.     Temperature is raised two degrees e.    2 moles of catalyst are added 1B.     For a second order decomposition reaction (one reactant), if the concentration of the reactant is tripled, the rate: a.      Triples b.     Increases nine-fold c.      Decreases by one third d.     Stays the same
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its inital value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation caculates the time...
If the concentration of a reactant is 0.0560 M 25.5 seconds after a reaction starts and...
If the concentration of a reactant is 0.0560 M 25.5 seconds after a reaction starts and is 0.0156 M 60.5 seconds after the start of the reaction , how many seconds after the start of the reaction does it take for the reactant concentration to decrease to 0.00450 M? Assume the reaction is first       order in this reactant.
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its initial value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation calculates the time...
Suppose a reaction with a single reactant is first order in that reactant. As a first-order...
Suppose a reaction with a single reactant is first order in that reactant. As a first-order reaction, the concentration of the reactant will decrease exponentially with time, and its half-life will be constant. Does the fraction of molecules that react per unit time change as the reaction progresses? Justify your answer. please justify with words and not just equations.
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M...
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M after 305 s . What is the rate constant for this reaction? (I got this answer 3.10*10^-4 M/s) What was the initial reactant concentration for the reaction described in Part A? The reactant concentration in a first-order reaction was 0.100 M after 40.0 s and 3.80×10−3M after 90.0 s . What is the rate constant for this reaction? (I got this answer 6.54*10^-2 1/s)...
A particular reactant decomposes with a half-life of 157 s when its initial concentration is 0.372...
A particular reactant decomposes with a half-life of 157 s when its initial concentration is 0.372 M. The same reactant decomposes with a half-life of 231 s when its initial concentration is 0.253 M. A.) Determine the reaction order. B)What is the value and unit of the rate constant for this reaction?
1. If I collected rate and concentration data for reactant Q and a plot of 1/[Q]...
1. If I collected rate and concentration data for reactant Q and a plot of 1/[Q] vs time produces a straight line plot with a slope of 0.363 M-1LaTeX: \cdot ⋅ s-1 What can you say definitively regarding the reaction order with respect to Q? Reaction IS 1st order with respect to Q Reaction IS 0th order with respect to Q Reaction IS 2nd order with respect to Q Reaction is NOT 2nd order with respect to Q 2. Which...