Question

Calculate ∆Go at 600. K for H2O(g) + 1/2 O2(g) ⇆ H2O2(g) using the following data:...

Calculate ∆Go at 600. K for

H2O(g) + 1/2 O2(g) ⇆ H2O2(g)

using the following data:

H2(g) +O2(g) ⇆ H2O2(g)

K = 1.8x10^37 at 600. K

2H2(g) + O2(g) ⇆ 2H2O(g)

K = 2.3x10^6 at 600. K

∆Go = ____ kJ/mol

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The mechanism for the reaction 2 H2O2(aq) à 2 H2O(l) + O2(g) in the presence of...
The mechanism for the reaction 2 H2O2(aq) à 2 H2O(l) + O2(g) in the presence of I–(aq) is proposed to be: Step 1: H2O2(aq) + I–(aq) à H2O(l) + OI–(aq)                                   (slow) Step 2: H2O2(aq) + OI–(aq) à H2O(l) + O2(g) + I–(aq)                       (fast) What is the rate law for the overall reaction?             a. Rate = k[H2O2]2             b. Rate = k[H2O2][I–]             c. Rate = k[H2O2]2[I–]/[H2O]             d. Rate = k[H2O2][OI–]             e. Rate = k[H2O2]
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g)...
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g) -242 For the reaction   4 Ag(s) + 2 H2S(g) + O2(g) --> 2 Ag2S(s) + 2 H2O(g)    at a temperature of 25 °C, ∆H° = −507 kJ Calculate the ∆Hf° of Ag2S (s) is (in kJ mol−1): -285.5 -32 -64 + 475
Consider the reaction: 2H2O(l)2H2(g) + O2(g) Using standard thermodynamic data at 298K, calculate the entropy change...
Consider the reaction: 2H2O(l)2H2(g) + O2(g) Using standard thermodynamic data at 298K, calculate the entropy change for the surroundings when 1.88 moles of H2O(l) react at standard conditions. S°surroundings = J/K
PART 1. Which of the following reactions are spontaneous (favorable). Check all that apply. A. 2Mg(s)+O2(g)--->2MgO(s)...
PART 1. Which of the following reactions are spontaneous (favorable). Check all that apply. A. 2Mg(s)+O2(g)--->2MgO(s) delta G=-1137kj/mol B.NH3(g)+HCl(g)--->NH4Cl(s) delta G=-91.1 kj/mol C.AgCl(s)--->Ag+(aq)+Cl-(aq) delta G=55.6 kj/mol D.2H2(g)+O2(g)--->2H2O(g) delta G=456 kj/mol E.C(s)+H2O(l)--->CO(g)+H2(g) delta G=90.8 kj/mol F.CH4(g)+2O2(g)--->CO2(g)+2H2O(l) delta G=-820 kj/mol PART 2. Calculate the standard entropy, ΔS°rxn, of the following reaction at 25.0 °C using the data in this table. The standard enthalpy of the reaction, ΔH°rxn, is –633.1 kJ·mol–1. 3C2H2(g)--->C6H6(l)   ΔS°rxn=____JxK-1xmol-1 Then calculate Gibbs free energy for ΔG°rxn in kjxmol-1 Finally,...
A. Using given data, calculate the change in Gibbs free energy for each of the following...
A. Using given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298K under standard conditions. 2H2O2(l)→2H2O(l)+O2(g) Gibbs free energy for H2O2(l) is -120.4kJ/mol Gibbs free energy for H2O(l) is -237.13kJ/mol B. A certain reaction has ΔH∘ = + 35.4 kJ and ΔS∘ = 85.0 J/K . Calculate ΔG∘ for the reaction at 298 K. Is the reaction spontaneous at 298K under standard conditions?
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l)...
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l) + O2(g) → HCOOH(l) + H2O(l) ΔH°=-473.0 kJ C(s) + 2H2(g) + 1/2O2(g) → CH3OH(l) ΔH°=-238.0 kJ H2(g) + 1/2O2(g) → H2O(l) ΔH°=-286.0 kJ calculate ΔH° for the reaction: HCOOH(l) + CH3OH(l) → CH3OCHO(l) + H2O(l)
Consider the reaction C6H4(OH)2 (l) + H2O2 (l) ⎯→ C6H4O2 (l) + 2 H2O (l) (a)...
Consider the reaction C6H4(OH)2 (l) + H2O2 (l) ⎯→ C6H4O2 (l) + 2 H2O (l) (a) Use the following information to calculate ΔH° for the above reaction. Show all work. ΔH° C6H4(OH)2 (l) ⎯⎯→ C6H4O2 (l) + H2 (g) +177.4 kJ H2 (g) + O2 (g) ⎯⎯→ H2O2 (l) -187.8 kJ H2 (g) + € 1 2 O2 (g) ⎯⎯→ H2O (l) -285.8 kJ (b) Based on your answer to part a, above, would heat be gained or lost by...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g)...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g) → CO2(g) ΔH° = -394.0 kJ 2CO2(g) + H2O(l) → C2H2(g) + 5/2O2(g) ΔH° = 1300.0 kJ Calculate ΔH° for the reaction: 2C(s) + H2(g) → C2H2(g)
Show in steps: Given the Reactions 1 and 2 below determine: a) ΔfHѲ for both HCl(g)...
Show in steps: Given the Reactions 1 and 2 below determine: a) ΔfHѲ for both HCl(g) H2O(g) all at 298 K 1) H2(g) + Cl2(g) → 2 HCl(g) ΔrHѲ = - 184.62 kJ/mol 2) H2(g) + O2(g) → 2 H2O(g) ΔrHѲ = - 483.64 kJ/mol Balanced equation :HCl (g) + O2(g) → 2Cl2(g) + 2H2O(g)
Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l)...
Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT