Question

Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K...

Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K for the reaction

2 OF2(g) + 2 S(s) SO2(g) + SF4(g) OF2(g) + H2O(l) O2(g) + 2 HF(g) Ho /kJ = -276.6 SF4(g) + 2 H2O(l) 4 HF(g) + SO2(g) Ho /kJ = -827.5 S(s) + O2(g) SO2(g) Ho /kJ = -296.9

Homework Answers

Answer #1

2 OF2(g) + 2 S(s) —> SO2(g) + SF4(g)

OF2(g) + H2O(l) —>O2(g) + 2 HF(g) Ho /kJ = -276.6

SF4(g) + 2 H2O(l) —>4 HF(g) + SO2(g) Ho /kJ = -827.5

S(s) + O2(g) —> SO2(g) Ho /kJ = -296.9

Lets number the reaction as 0, 1, 2, 3 from top to bottom

required reaction should be written in terms of other reaction

This is Hess Law

required reaction can be written as:

reaction 0 = +2 * (reaction 1) -1 * (reaction 2) +1 * (reaction 3)

So, deltaHo rxn for required reaction will be:

deltaHo rxn = +2 * deltaHo rxn(reaction 1) -1 * deltaHo rxn(reaction 2) +1 * deltaHo rxn(reaction 3)

= +2 * (-276.6) -1 * (-827.5) +1 * (-296.9)

= -22.6 KJ

Answer: -22.6 KJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g)...
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g) -242 For the reaction   4 Ag(s) + 2 H2S(g) + O2(g) --> 2 Ag2S(s) + 2 H2O(g)    at a temperature of 25 °C, ∆H° = −507 kJ Calculate the ∆Hf° of Ag2S (s) is (in kJ mol−1): -285.5 -32 -64 + 475
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in...
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of methane to form carbon dioxide and gaseous water. ΔGfo (CH4(g)) = -48 ΔGfo (CO2(g)) = -395 ΔGfo (H2O(g)) = -236 2. Given the values of So given below in J/mol K and of ΔHfo given in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of ethane to form carbon dioxide...
The standard enthalpy change for this reaction is -731 kJ/mol at 298 K. 2 N2(g) +...
The standard enthalpy change for this reaction is -731 kJ/mol at 298 K. 2 N2(g) + 4 H2(g) + 3 O2(g) = 2 NH4NO3(s) ΔrH° = -731 kJ/mol Calculate the standard enthalpy change for the reaction N2(g) + 2 H2(g) + 3/2 O2(g) = NH4NO3(s) at 298 K.
1. Given the values of So given below in J/mol K and the values of ΔHfo...
1. Given the values of So given below in J/mol K and the values of ΔHfo given in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of butane to form carbon dioxide and gaseous water at 298 K. S (C4H10(g)) = 273 S (O2(g)) = 208 S (CO2(g)) = 214 S (H2O(g)) = 189 ΔHfo (C4H10(g)) = -123 ΔHfo (CO2(g)) = -394 ΔHfo (H2O(g)) = -223 2. A particular reaction has a ΔHo value...
Use the following reaction enthalpies to determine the reaction enthalpy for 2 HCl(g) + F2(g) →...
Use the following reaction enthalpies to determine the reaction enthalpy for 2 HCl(g) + F2(g) → 2 HF(g) + Cl2(g). 4 HCl(g) + O2(g) → 2 H2O(l) + 2 Cl2(g) ΔHrxn = - 202.4 kJ/mol rxn 1/2 H2(g) + 1/2 F2(g) → HF(g) ΔHrxn = - 271.0 kJ/mol rxn H2(g) + 1/2 O2(g) → H2O(l) ΔHrxn = - 285.8 kJ/mol rxn
Use the free energies of formation given below to calculate the equilibrium constant (K) for the...
Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K. 2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l) K = ? ΔG°f (kJ/mol) -110.9 87.6 51.3 -237.1 Calculate the ΔG∘rxn for the reaction using the following information. 4HNO3(g)+5N2H4(l)→7N2(g)+12H2O(l) ΔG∘f(HNO3(g)) = -73.5 kJ/mol; ΔG∘f(N2H4(l)) = 149.3 kJ/mol; ΔG∘f(N2(g)) = 0 kJ/mol; ΔG∘f(H2O(l)) = -273.1 kJ/mol. Calculate the ΔG°rxn using the following information. 2 H2S(g) + 3 O2(g) → 2...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g)...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g) + O2 (g)  → CO2 (g) + H2O (l) (unbalanced) ΔHf C2H6 (g) = -84.7 kJ/mol; S C2H6 (g) = 229.5 J/K⋅mol; ΔHf ∘ CO2 (g) = -393.5 kJ/mol; S CO2 (g) = 213.6 J/K⋅mol; ΔHf H2O (l) = -285.8 kJ/mol; SH2O (l) = 69.9 J/K⋅mol; SO2 (g) = 205.0 J/K⋅mol
Use the standard reaction enthalpies given below to determine ΔH°rxn for the following reaction: 2 S(s)...
Use the standard reaction enthalpies given below to determine ΔH°rxn for the following reaction: 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH°rxn = ? Given: SO2(g) → S(s) + O2(g) ΔH°rxn = +296.8 kJ 2 SO2(g) + O2(g) → 2 SO3(g) ΔH°rxn = -197.8 kJ Please explain in detail.
Given the data 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH = −790 kJ S(s)...
Given the data 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH = −790 kJ S(s) + O2(g) → SO2(g) ΔH = −297 kJ SO3(g) + H2O(l) → H2SO4(l) ΔH = −132 kJ use Hess's law to calculate ΔH for the reaction 2 SO2(g) + O2(g) → 2 SO3(g).
∆Ho = −3310 kJ/mol for: 4 FeS2(s) + 11 O2(g) → 2 Fe2O3(s) + 8 SO2(g)...
∆Ho = −3310 kJ/mol for: 4 FeS2(s) + 11 O2(g) → 2 Fe2O3(s) + 8 SO2(g) If ∆Hof [Fe2O3(s)] = -824.2 and ∆Hof [SO2(g)] = −296.83 kJ/mol determine ∆Ho for Fe(s) + 2S(s) → FeS2(s).