Question

Use the free energies of formation given below to calculate the equilibrium constant (K) for the...

Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K.

2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l) K = ?
ΔG°f (kJ/mol) -110.9 87.6 51.3 -237.1

Calculate the ΔG∘rxn for the reaction using the following information.

4HNO3(g)+5N2H4(l)→7N2(g)+12H2O(l)

ΔG∘f(HNO3(g)) = -73.5 kJ/mol;
ΔG∘f(N2H4(l)) = 149.3 kJ/mol;
ΔG∘f(N2(g)) = 0 kJ/mol;
ΔG∘f(H2O(l)) = -273.1 kJ/mol.

Calculate the ΔG°rxn using the following information.

2 H2S(g) + 3 O2(g) → 2 SO2(g) + 2 H2O(g) ΔG°rxn = ?
ΔG°f (kJ/mol) -33.4 -3300.1 -228.6

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
19) Use the free energies of formation given below to calculate the equilibrium constant (K) for...
19) Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K. 2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l) K = ? ΔG°f (kJ/mol) -110.9, 87.6, 51.3, -237.1
Calculate the ΔG∘rxn for the reaction using the following information. 4HNO3(g)+5N2H4(l)→7N2(g)+12H2O(l) ΔG∘f(HNO3(g)) = -73.5 kJ/mol; ΔG∘f(N2H4(l))...
Calculate the ΔG∘rxn for the reaction using the following information. 4HNO3(g)+5N2H4(l)→7N2(g)+12H2O(l) ΔG∘f(HNO3(g)) = -73.5 kJ/mol; ΔG∘f(N2H4(l)) = 149.3 kJ/mol; ΔG∘f(N2(g)) = 0 kJ/mol; ΔG∘f(H2O(l)) = -273.1 kJ/mol. Calculate the  for the reaction using the following information. = -73.5 ; = 149.3 ; = 0 ; = -273.1 . -312.9 kJ +110.7 kJ -954.7 kJ -3.298 x 103 kJ +2.845 x 103 kJ
Use standard free energies of formation to calculate ΔG∘ΔG∘ at 25 ∘C∘C for each of the...
Use standard free energies of formation to calculate ΔG∘ΔG∘ at 25 ∘C∘C for each of the following reactions. Substance ΔG∘f(kJ/mol)ΔGf∘(kJ/mol) H2O(g)H2O(g) −−228.6 H2O(l)H2O(l) −−237.1 NH3(g)NH3(g) −−16.4 NO(g)NO(g) 87.6 CO(g)CO(g) −−137.2 CO2(g)CO2(g) −−394.4 CH4(g)CH4(g) −−50.5 C2H2(g)C2H2(g) 209.9 C2H6(g)C2H6(g) −−32.0 Fe3O4(s)Fe3O4(s) −−1015.4 KClO3(s)KClO3(s) −−296.3 KCl(s)KCl(s) −−408.5 Part A C(s,graphite)+2H2(g)→CH4(g)C(s,graphite)+2H2(g)→CH4(g) Express your answer to one decimal place and include the appropriate units. Part B Fe3O4(s)+4H2(g)→3Fe(s)+4H2O(g)Fe3O4(s)+4H2(g)→3Fe(s)+4H2O(g) Express your answer to one decimal place and include the appropriate units. Part C N2(g)+O2(g)→2NO(g)N2(g)+O2(g)→2NO(g) Express your answer...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report your answer to two decimal places in standard notation. H2S(g) + 2O2(g) → SO3(g) + H2O(l) H2S (g): -20.60 kJ/mol O2 (g): 0.00 kJ/mol SO3 (g): -395.77 kJ/mol H2O (l): -285.83 kJ/mol 2. Calculate the amount of heat absorbed/released (in kJ) when 22.54 grams of SO3 are produced via the above reaction. Report your answer to two decimal places, and use appropriate signs to...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g)...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g) + O2 (g)  → CO2 (g) + H2O (l) (unbalanced) ΔHf C2H6 (g) = -84.7 kJ/mol; S C2H6 (g) = 229.5 J/K⋅mol; ΔHf ∘ CO2 (g) = -393.5 kJ/mol; S CO2 (g) = 213.6 J/K⋅mol; ΔHf H2O (l) = -285.8 kJ/mol; SH2O (l) = 69.9 J/K⋅mol; SO2 (g) = 205.0 J/K⋅mol
9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation...
9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation (ΔH°f ) of liquid methanol (CH3OH) from its elements. 2 CH3OH(l) + 3 O2(g) → 2 CO2(g) + 4 H2O(l)     ΔH°rxn = −1452.8 kJ C(graphite) + O2(g) → CO2(g)                               ΔH°rxn = −393.5 kJ 2 H2(g) + O2(g) → 2 H2O(l)                                     ΔH°rxn = −571.6 kJ (1) −238.7 kJ/mol    (2) 487.7 kJ/mol       (3) −548.3 kJ/mol    (4) 20.1 kJ/mol         (5) 47.1 kJ/mol
Given the following information below, use Hess’s Law to calculate the enthalpy of formation for sodium...
Given the following information below, use Hess’s Law to calculate the enthalpy of formation for sodium oxide: Na (s)     +      HCl (l)  à    NaCl (aq) + ½ H2 (g)                ∆HRx = -393.1 kJ/mol Na2O (s)     +     2 HCl (l)  à 2 NaCl (aq)   + H2O              ∆HRx = -675.2 kJ/mol H2 (g)       +      ½ O2 (g)  à    H2O (g)                              ∆HRx = -288.1 kJ/mol 2 Na (s)       +       ½ O2 (g)   à   Na2O (s)                          ∆HRx =    __________ kJ/mol Calculated Heat of Reaction is....? (Put your answer in...
A. Using given data, calculate the change in Gibbs free energy for each of the following...
A. Using given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298K under standard conditions. 2H2O2(l)→2H2O(l)+O2(g) Gibbs free energy for H2O2(l) is -120.4kJ/mol Gibbs free energy for H2O(l) is -237.13kJ/mol B. A certain reaction has ΔH∘ = + 35.4 kJ and ΔS∘ = 85.0 J/K . Calculate ΔG∘ for the reaction at 298 K. Is the reaction spontaneous at 298K under standard conditions?
a) Calculate the equilibrium constant at 17 K for a reaction with ΔHrxno = 10 kJ...
a) Calculate the equilibrium constant at 17 K for a reaction with ΔHrxno = 10 kJ and ΔSrxno = -100 J/K. (Don't round until the end. Using the exponent enlarges any round-off error.) b) Calculate the equilibrium constant at 146 K for the thermodynamic data in the previous question (Notice that Keq is larger at the larger temperature for an endothermic reaction) c) Calculate the equilibrium constant at 43 K for a reaction with ΔHrxno = 10 kJ and ΔSrxno...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the heat of...