Question

Develop a plot that shows how a rate constant is affected by changes in temperature for...

Develop a plot that shows how a rate constant is affected by changes in

temperature for Eact = 10, 20, 40, and 80 kJ/mol.

Homework Answers

Answer #1

ANSWER;

The formula to find rate of the reaction is

K = Ae

Where K = rate constant

A = frequency factor

e = mathematical quanity

EA = activation energy

R = gas constant (8.31)

T = tempertaure in Kelvin

on sub the value 20 in the equation we will get 1.21 *10 and for 30 it will be 2.23

By increasing the temperature by 10°, the rate of reaction to almost double. This is the value in the rule-of-thumb often used in simple rate of reaction work.The rate constant goes on increasing as the temperature goes up, but the rate of increase falls off quite rapidly at higher temperatures.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in...
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute...
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins...
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), Ais a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute temperatures (T1and...
A. The Arrhenius equation shows the relationship between the rate constant k and the temperature T...
A. The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathematically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different...
The rate constant (k) for a reaction was measured as a function of temperature. A plot...
The rate constant (k) for a reaction was measured as a function of temperature. A plot of lnk versus 1/T(in K) is linear and has a slope of −1.49×104 K . Ea=???
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction...
Given that the initial rate constant is 0.0110s−1 at an initial temperature of 21 ∘C ,...
Given that the initial rate constant is 0.0110s−1 at an initial temperature of 21 ∘C , what would the rate constant be at a temperature of 200. ∘C for the same reaction described in Part A? Activation energy reaction for part A is 35.5 kJ/mol.
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Eais the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at...
A. Using a first order plot, determine the rate constant, k_1, for the oxidation of benzyl...
A. Using a first order plot, determine the rate constant, k_1, for the oxidation of benzyl alcohol with potassium permanganate at the temperature, T_1 = 20.8 degrees celcius, from the information in the table below. ( Molar absorptivity = 2350M^-1cm^-1 ; path length, 1=1cm. Time (Minutes) Absorbance 15 .785 30 .500 45 .0.333 B.) Using a second rate constant, K_2 = .0609min^-1, at the temperature, T_2 = 37.9 degrees celcius, determine the activation energy for the oxidation of benzyl alcohol...
at 25 degrees celsius, a rate constant has the value 5.21*10^-8 L /Mol*s. If the activation...
at 25 degrees celsius, a rate constant has the value 5.21*10^-8 L /Mol*s. If the activation energy is 75.2 kj/mol, calculate the rate constant when the temperature is 50 degrees celsius.
Two factors, temperature and time factors are investigated. The response values are given. a. Develop a...
Two factors, temperature and time factors are investigated. The response values are given. a. Develop a factorial design square using the Excel spreadsheet. b. Draw the main effects plot Temperature Time 10 Time 15 Time 20 70 26 40 55 70 27 41 54 100 37 57 78 100 38 58 77