Question

A. The Arrhenius equation shows the relationship between the rate constant k and the temperature T...

A. The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as

k=AeEa/RT

where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction.

However, a more practical form of this equation is

lnk2k1=EaR(1T1−1T2)

which is mathematically equivalent to

lnk1k2=EaR(1T2−1T1)

where k1 and k2 are the rate constants for a single reaction at two different absolute temperatures (T1 and T2).

Part 1: The activation energy of a certain reaction is 43.9 kJ/mol . At 28  ∘C , the rate constant is 0.0130s−1. At what temperature in degrees Celsius would this reaction go twice as fast?

Express your answer with the appropriate units.

Part 2: Given that the initial rate constant is 0.0130s−1 at an initial temperature of 28  ∘C , what would the rate constant be at a temperature of 100.  ∘C for the same reaction described in Part A?

Express your answer with the appropriate units.

B. A reaction occurs by a two-step mechanism, shown below. Step 1: AX2(g) → AX(g) + X(g) Step 2: AX2(g) + X(g) → AX + X2(g) The intermediate in this reaction is ________, and the molecularity of the second step is ________. Enter your answers separated by a comma.

* The answer is NOT AX and 2

Homework Answers

Answer #1

To convert Kelvin to Celsius.
C+ 273= 313.4 K
Temperature in degree Celsius = 313.4 - 273 = 40.4 deg C

Please post the remaining question as a new question

Update

B)

A reaction intermediate is transient species within a multi-step reaction mechanism that is produced in the preceding step and consumed in a subsequent step to ultimately generate the final reaction product.

So X which is formed in Step 1 and consumed in step 2 to produce the product X2 is the intermediate.

Molecularity is the number of molecules that come together to react in an elementary reaction and is equal to the sum of stoichiometric coefficients of reactants in this elementary reaction.

Molecularity of the second step is 1+1= 2

The answer is X and 2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction...
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in...
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Eais the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at...
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins...
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), Ais a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute temperatures (T1and...
The Arrhenius Equation is typically written as k=Ae−Ea/RT However, the following more practical form of this...
The Arrhenius Equation is typically written as k=Ae−Ea/RT However, the following more practical form of this equation also exists: lnk2k1=EaR(1T1−1T2) where k1 and k2 are the rate constants for a single reaction at two different absolute temperatures (T1and T2). Part A The activation energy of a certain reaction is 32.1 kJ/mol . At 20 ∘C, the rate constant is 0.0130 s−1. At what temperature would this reaction go twice as fast? Express your answer numerically in degrees Celsius Part B...
There are several factors that affect the rate of a reaction. These factors include temperature, activation...
There are several factors that affect the rate of a reaction. These factors include temperature, activation energy, steric factors (orientation), and also collision frequency, which changes with concentration and phase. All the factors that affect reaction rate can be summarized in an equation called the Arrhenius equation: k=Ae−Ea/RT where k is the rate constant, A is the frequency factor, Ea is the activation energy, R=8.314 J/(mol⋅K) is the universal gas constant, and T is the absolute temperature. __________________________________________________ A certain...
The following data show the rate constant of a reaction measured at several different temperatures. Temperature...
The following data show the rate constant of a reaction measured at several different temperatures. Temperature (K) Rate constant (1/s) 300 6.50×10−2 310 0.191 320 0.527 330 1.36 340 3.34 Part A. Use an Arrhenius plot to determine the activation barrier (Ea) for the reaction. Part B. Use an Arrhenius plot to determine the frequency factor (A) for the reaction.
The rate constant for the reaction below was determined to be 3.241×10-5 s–1 at 800 K....
The rate constant for the reaction below was determined to be 3.241×10-5 s–1 at 800 K. The activation energy of the reaction is 215 kJ/mol. What would be the value of the rate constant at 9.10×102 K? N2O(g) --> N2(g) + O2(g) I'm having trouble calculating the rate constant with the arrhenius equation that deals with two temps, could you show me the step by step how to do this?
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K....
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K. Part A What is the value of the activation energy in kJ/mol? Ea = 134   kJ/mol   SubmitMy AnswersGive Up Correct Part B What is the rate constant at 770K ? Express your answer using two significant figures. k =   /(M?s)
Part A The activation energy of a certain reaction is 43.9 kJ/mol . At 28  ∘C ,...
Part A The activation energy of a certain reaction is 43.9 kJ/mol . At 28  ∘C , the rate constant is 0.0130s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. Part B Given that the initial rate constant is 0.0130s−1 at an initial temperature of 28  ∘C , what would the rate constant be at a temperature of 100.  ∘C for the same reaction described in Part A? Express your answer...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT