Question

Calculate the standard entropy, ΔS°rxn, of the following reaction at 25.0 °C using the data in...

Calculate the standard entropy, ΔS°rxn, of the following reaction at 25.0 °C using the data in this table. The standard enthalpy of the reaction, ΔH°rxn, is –633.1 kJ·mol–1. 3C2H2(g)==>C6H6(l)

Delta S rxn =

Then calculate the standard gibbs free energy of the reaction Delta G rxn

Delta G rxn=

Homework Answers

Answer #1

3C2H2(g)==>C6H6(l)

ΔH°rxn, = ΔH°f products -ΔH°f reactans

              = 49.08-3*227.48   = -633.36KJ

ΔS°rxn, = ΔS°f products -ΔS°f reactans

             = 173.4 -3*200.9   = -429.4J/Mole-K   = -0.4294Kj/mole-K

ΔG0      = ΔH-TΔS

              =- 633.1-298*-0.4294   = -505.14KJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
PART 1. Which of the following reactions are spontaneous (favorable). Check all that apply. A. 2Mg(s)+O2(g)--->2MgO(s)...
PART 1. Which of the following reactions are spontaneous (favorable). Check all that apply. A. 2Mg(s)+O2(g)--->2MgO(s) delta G=-1137kj/mol B.NH3(g)+HCl(g)--->NH4Cl(s) delta G=-91.1 kj/mol C.AgCl(s)--->Ag+(aq)+Cl-(aq) delta G=55.6 kj/mol D.2H2(g)+O2(g)--->2H2O(g) delta G=456 kj/mol E.C(s)+H2O(l)--->CO(g)+H2(g) delta G=90.8 kj/mol F.CH4(g)+2O2(g)--->CO2(g)+2H2O(l) delta G=-820 kj/mol PART 2. Calculate the standard entropy, ΔS°rxn, of the following reaction at 25.0 °C using the data in this table. The standard enthalpy of the reaction, ΔH°rxn, is –633.1 kJ·mol–1. 3C2H2(g)--->C6H6(l)   ΔS°rxn=____JxK-1xmol-1 Then calculate Gibbs free energy for ΔG°rxn in kjxmol-1 Finally,...
The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which...
The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which at 298 K ΔH∘rxn = −1684 kJ ΔS∘rxn = −543.7 J/K Gibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS where H is enthalpy, T is temperature, and S is entropy. Part A What is the standard Gibbs free energy for...
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following...
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following standard enthalpy of combustion data, ∆H˚comb (C(graphite) = –393.5 kJ·mol–1 H2(g) + ½ O2(g) H2O(l) ∆H˚rxn = –285.8 kJ·mol–1 2 C2H6(g) + 7 O2(g) 4 CO2(g) + 6 H2O(l) ∆H˚rxn = –3119.6 kJ·mol–1 (a) –84.6 kJ·mol–1 (b) 2440.2 kJ·mol–1 (c) –3799.0 kJ·mol–1 (d) –224.5 kJ·mol–1(e) not enough information provided
A. Using given data, calculate the change in Gibbs free energy for each of the following...
A. Using given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298K under standard conditions. 2H2O2(l)→2H2O(l)+O2(g) Gibbs free energy for H2O2(l) is -120.4kJ/mol Gibbs free energy for H2O(l) is -237.13kJ/mol B. A certain reaction has ΔH∘ = + 35.4 kJ and ΔS∘ = 85.0 J/K . Calculate ΔG∘ for the reaction at 298 K. Is the reaction spontaneous at 298K under standard conditions?
Given the following data, calculate, ΔH rxn, ΔS rxn, and Δ rxn, at 25° C for...
Given the following data, calculate, ΔH rxn, ΔS rxn, and Δ rxn, at 25° C for the equilibrium describe by the chemical equation. What direction is the spontaneity of this system? Mg (s) +HCl (aq) <---> H2 (g) + MgCl2 (aq) Mg(s) HCl(aq) H2 (g) MgCl2(aq) ΔH°f (Kj/mol) 0 -167.2 0 -801.3 S°(J/(mol K) 130.7 56.5 32.7 -24.0
Part A Calculate the standard enthalpy change for the reaction 2A+B⇌2C+2D where the heats of formation...
Part A Calculate the standard enthalpy change for the reaction 2A+B⇌2C+2D where the heats of formation are given in the following table: Substance ΔH∘f (kJ/mol) A -227 B -399 C 213 D -503 Express your answer in kilojoules. Answer= 273kJ Part B: For the reaction given in Part A, how much heat is absorbed when 3.70 mol of A reacts? Express your answer numerically in kilojoules. Part C: For the reaction given in Part A, ΔS∘rxn is 25.0 J/K ....
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C? 2NH3(g)→N2H4(g)+H2(g) 2KClO3(s)→2KCl(s)+3O2(g)
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold...
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold below given the following chemical steps and their respective enthalpy changes. Show ALL work! 2 C(s) + H2(g) → C2H2(g) ΔH°rxn = ? 1. C2H2(g) + 5/2 O2(g) → 2CO2 (g) + H2O (l) ΔH°rxn = -1299.6 kJ 2. C(s) + O2(g) → CO2 (g) ΔH°rxn = -393.5 kJ 3. H2(g) + ½ O2(g) → H2O (l) ΔH°rxn = -285.8 kJ
he thermodynamic properties for a reaction are related by the equation that defines the standard free...
he thermodynamic properties for a reaction are related by the equation that defines the standard free energy, ΔG∘, in kJ/mol: ΔG∘=ΔH∘−TΔS∘ where ΔH∘ is the standard enthalpy change in kJ/mol and ΔS∘ is the standard entropy change in J/(mol⋅K). A good approximation of the free energy change at other temperatures, ΔGT, can also be obtained by utilizing this equation and assuming enthalpy (ΔH∘) and entropy (ΔS∘) change little with temperature. Part A For the reaction of oxygen and nitrogen to...
Calculate the entropy of vaporization, ΔSvap, for A(l) at 25.0 °C given that the boiling point...
Calculate the entropy of vaporization, ΔSvap, for A(l) at 25.0 °C given that the boiling point of A is 72.45 °C, and the molar heat capacity of A(l) is 116.45 J/(mol·K). Assume that the molar heat capacity of A(g) is 56.5% of that of A(l). Calculate the standard Gibbs free energy of vaporization, ΔG°vap, at 25.0 °C. Determine the equilibrium constant, K, for the vaporization at 191.0 °C. Determine the equilibrium constant, K, for the vaporization at 191.0 °C.