Question

The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which...

The chemical reaction that causes iron to corrode in air is given by

4Fe+3O2→2Fe2O3

in which at 298 K

ΔH∘rxn = −1684 kJ
ΔS∘rxn = −543.7 J/K

Gibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS where H is enthalpy, T is temperature, and S is entropy.

Part A

What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K.

Part B

What is the Gibbs free energy for this reaction at 3652 K ? Assume that ΔH and ΔS do not change with temperature.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which...
The chemical reaction that causes iron to corrode in air is given by 4Fe+3O2→2Fe2O3 in which at 298 K ΔH∘rxn = −1684 kJ ΔS∘rxn = −543.7 J/K Part A: What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K. Part B: What is the Gibbs free energy for this reaction at 3652 K ? Assume that ΔH and ΔS do not change with temperature. Part C: At what temperature Teq...
The chemical reaction that causes iron to corrode in air is given by 4Fe(s)+3O2(g)→2Fe2O3(s) and ΔrH∘...
The chemical reaction that causes iron to corrode in air is given by 4Fe(s)+3O2(g)→2Fe2O3(s) and ΔrH∘ = −1684 kJ mol−1 ΔrS∘ = −543.7 J K−1 mol−1 a) What is the standard Gibbs energy change for this reaction? Assume the commonly used standard reference temperature of 298 K. b) What is the Gibbs energy for this reaction at 3652 K ? Assume that ΔrH∘ and ΔrS∘ do not change with temperature. c) The standard Gibbs energy change, ΔrG∘, applies only when...
The chemical reaction that causes magnesium to corrode in air is given by 2Mg+O2→2MgO in which...
The chemical reaction that causes magnesium to corrode in air is given by 2Mg+O2→2MgO in which at 298 K ΔH∘rxn = −1204 kJ ΔS∘rxn = −217.1 J/K Part A What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K. Express your answer as an integer and include the appropriate units. Part B What is the Gibbs free energy for this reaction at 5958 K ? Assume that ΔH and ΔS...
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity...
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS where H is enthalpy, T is temperature, and S is entropy. The chemical reaction that causes aluminum to corrode in air is given by 4Al+3O2→2Al2O3 in which at 298 K ΔH∘rxn = −3352 kJ ΔS∘rxn = −625.1 J/K Part A What is...
Calculate the standard entropy, ΔS°rxn, of the following reaction at 25.0 °C using the data in...
Calculate the standard entropy, ΔS°rxn, of the following reaction at 25.0 °C using the data in this table. The standard enthalpy of the reaction, ΔH°rxn, is –633.1 kJ·mol–1. 3C2H2(g)==>C6H6(l) Delta S rxn = Then calculate the standard gibbs free energy of the reaction Delta G rxn Delta G rxn=
he thermodynamic properties for a reaction are related by the equation that defines the standard free...
he thermodynamic properties for a reaction are related by the equation that defines the standard free energy, ΔG∘, in kJ/mol: ΔG∘=ΔH∘−TΔS∘ where ΔH∘ is the standard enthalpy change in kJ/mol and ΔS∘ is the standard entropy change in J/(mol⋅K). A good approximation of the free energy change at other temperatures, ΔGT, can also be obtained by utilizing this equation and assuming enthalpy (ΔH∘) and entropy (ΔS∘) change little with temperature. Part A For the reaction of oxygen and nitrogen to...
� Gibbs Free Energy: Equilibrium Constant Nitric oxide, NO, also known as nitrogen monoxide, is one...
� Gibbs Free Energy: Equilibrium Constant Nitric oxide, NO, also known as nitrogen monoxide, is one of the primary contributors to air pollution, acid rain, and the depletion of the ozone layer. The reaction of oxygen and nitrogen to form nitric oxide in an automobile engine is N2(g)+O2(g)?2NO(g) The spontaneity of a reaction can be determined from the free energy change for the reaction, ?G?. A reaction is spontaneous when the free energy change is less than zero. A reaction...
Part A Calculate the standard enthalpy change for the reaction 2A+B⇌2C+2D where the heats of formation...
Part A Calculate the standard enthalpy change for the reaction 2A+B⇌2C+2D where the heats of formation are given in the following table: Substance ΔH∘f (kJ/mol) A -227 B -399 C 213 D -503 Express your answer in kilojoules. Answer= 273kJ Part B: For the reaction given in Part A, how much heat is absorbed when 3.70 mol of A reacts? Express your answer numerically in kilojoules. Part C: For the reaction given in Part A, ΔS∘rxn is 25.0 J/K ....
A. Using given data, calculate the change in Gibbs free energy for each of the following...
A. Using given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298K under standard conditions. 2H2O2(l)→2H2O(l)+O2(g) Gibbs free energy for H2O2(l) is -120.4kJ/mol Gibbs free energy for H2O(l) is -237.13kJ/mol B. A certain reaction has ΔH∘ = + 35.4 kJ and ΔS∘ = 85.0 J/K . Calculate ΔG∘ for the reaction at 298 K. Is the reaction spontaneous at 298K under standard conditions?
1)calculate the equilibrium constants at 25∘C for each reaction. Part A 2NO(g)+O2(g)⇌2NO2(g) Express your answer using...
1)calculate the equilibrium constants at 25∘C for each reaction. Part A 2NO(g)+O2(g)⇌2NO2(g) Express your answer using two significant figures. Part B N2(g)+O2(g)⇌2NO(g) Express your answer using two significant figures. 2) Calculate the change in Gibbs free energy for each of the following sets of ΔHrxn, ΔSrxn, and T. Part A ΔH∘rxn=+ 85 kJ , ΔSrxn=+ 155 J/K , T= 298 K Express your answer as an integer. Part B ΔH∘rxn=+ 85 kJ , ΔSrxn=+ 155 J/K , T= 753 K...