Calculate the entropy of vaporization, ΔSvap, for A(l) at 25.0 °C given that the boiling point of A is 72.45 °C, and the molar heat capacity of A(l) is 116.45 J/(mol·K). Assume that the molar heat capacity of A(g) is 56.5% of that of A(l).
Calculate the standard Gibbs free energy of vaporization, ΔG°vap, at 25.0 °C.
Determine the equilibrium constant, K, for the vaporization at 191.0 °C.
Determine the equilibrium constant, K, for the vaporization at 191.0 °C.
(i). Formula (i): ΔSvap = nCp ln(T2/T1)
Here, Cp = 116.45 J/(mol·K), T2 = 72.45 °C = 72.45 + 273.15 = 345.6 K and T1 = 25 °C = 298.15 K
Let's consider n = 1 mol
Now, ΔSvap = 1 mol * 116.45 J/(mol·K) * ln(345.6/298.15)
i.e. ΔSvap = 17.198 J/K
(ii) Formula (ii): ΔHovap = nCp*ΔT
i.e. ΔHovap = 1 mol * 116.45 J/(mol·K) * (345.6-298.15) K
i.e. ΔHovap = 5525.55 J
Formula (iii): ΔGovap = ΔHovap - TΔSvap
Now, ΔGovap = 5525.55 J - 298.15 K * 17.198 J/K
i.e. ΔGovap = 397.97 J
(iii) Formula (iv): ΔGovap = -RT lnK
i.e. K = e-ΔGovap/RT
Here, T = 191 oC = 464.15 K and R = universal gas constant
i.e. K = e-397.97/8.314*464.15
i.e. K = 0.902
Get Answers For Free
Most questions answered within 1 hours.