Question

Calculate the equilibrium constant for the following reaction: 2NaO(g) ⇌ Na2O2(g) Given: NaO(g) ⇌ Na(l) +...

Calculate the equilibrium constant for the following reaction: 2NaO(g) ⇌ Na2O2(g)

Given: NaO(g) ⇌ Na(l) + 1/2O2 K = 2 x 10-5

Na2O2 ⇌ 2Na(l) + O2(g) K = 5 x 10-29

Homework Answers

Answer #1

Three important points to recall are

1. When the equation is multiplied by a factor of n, the new equilibrium expression can

be written as Knew=(Korig)n

2. The equilibrium expression for a reaction written in the reverse is the reciprocal of that

for the original reaction.

3. For a reaction made up of two or more steps, the equilibrium constant for the net reaction is the product of the equilibrium constants of the individual steps

The required equilibrium equation is obtained by adopting following steps.

[equation(1) x 2 ] + [reverse of equation(2)]

so equilibrium constant of the resultant equation = K12 / K2

= {( 2 x 10-5)2 } / [ 5 x 10-29] = 0.8 x 1019 = 8 x 1018

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the equilibrium constant Keq for the following reaction at 25°C. (S° values in J/mol•K: N2(g),...
Calculate the equilibrium constant Keq for the following reaction at 25°C. (S° values in J/mol•K: N2(g), 191.5 ; O2(g), 205.0 ; Cl2(g), 223.0 ; NOCl(g), 261.6) N2(g) + O2(g) + Cl2(g) ↔ 2NOCl(g) ΔH° = 103.4 kJ a. 2.43 x 10−20 b. 8.82 x 10−29 c. 5.91 x 10−17 d. 2.01 x 10−10 e. 6.99 x 10−24
A student determines the value of the equilibrium constant to be 1.43×1064 for the following reaction....
A student determines the value of the equilibrium constant to be 1.43×1064 for the following reaction. 2Na(s) + 2H2O(l)2NaOH(aq) + H2(g) Based on this value of Keq: G° for this reaction is expected to be (greater, less) than zero. Calculate the free energy change for the reaction of 2.31 moles of Na(s) at standard conditions at 298K. G°rxn = kJ
A. The equilibrium constant, Kc, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g)<---> CH4(g)...
A. The equilibrium constant, Kc, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g)<---> CH4(g) + CCl4(g) Calculate the equilibrium concentrations of reactant and products when 0.346 moles of CH2Cl2 are introduced into a 1.00 L vessel at 350 K. B. The equilibrium constant, Kc, for the following reaction is 9.52×10-2at 350 K. CH4(g) + CCl4(g) <---> 2 CH2Cl2(g) Calculate the equilibrium concentrations of reactants and product when 0.200 moles of CH4and 0.200 moles of CCl4are introduced into a...
Answer the following questions: (a) The equilibrium constant for the following reaction is 2.90×10-2 at 1150K....
Answer the following questions: (a) The equilibrium constant for the following reaction is 2.90×10-2 at 1150K. 2SO3(g) --> 2SO2(g) + O2(g) If an equilibrium mixture of the three gases at 1150K contains 2.33×10^-2 M SO3(g) and 1.73×10^-2 M SO2, what is the equilibrium concentration of O2? ________ M (b) Consider the equilibrium system at 881 K. 2NH3 (g) --> N2 (g) + 3H2 (g) If an equilibrium mixture of the three gases at 881 K contains 6.06 x10^-5 M NH3,...
The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) +...
The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.390 moles of PCl5(g) are introduced into a 1.00 L vessel at 500 K.
Use the free energies of formation given below to calculate the equilibrium constant (K) for the...
Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K. 2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l) K = ? ΔG°f (kJ/mol) -110.9 87.6 51.3 -237.1 Calculate the ΔG∘rxn for the reaction using the following information. 4HNO3(g)+5N2H4(l)→7N2(g)+12H2O(l) ΔG∘f(HNO3(g)) = -73.5 kJ/mol; ΔG∘f(N2H4(l)) = 149.3 kJ/mol; ΔG∘f(N2(g)) = 0 kJ/mol; ΔG∘f(H2O(l)) = -273.1 kJ/mol. Calculate the ΔG°rxn using the following information. 2 H2S(g) + 3 O2(g) → 2...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g)...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g) → CO2(g) ΔH° = -394.0 kJ 2CO2(g) + H2O(l) → C2H2(g) + 5/2O2(g) ΔH° = 1300.0 kJ Calculate ΔH° for the reaction: 2C(s) + H2(g) → C2H2(g)
1.         Write equilibrium (mass action) expressions for each of the following reactions: (a) H2(g) + I2(g)          2 HI...
1.         Write equilibrium (mass action) expressions for each of the following reactions: (a) H2(g) + I2(g)          2 HI (b)2 NO(g) + O2(g)           2 NO2(g) (c)N2(g) + 3 H2(g)           2 NH3(g) (d) CO(g) + NO2(g)           CO2(g) + NO(g) (e) 2 CO(g) + O2(g)             2 CO2(g) 2.    Write equilibrium expressions for each of the following equilibria: (a) 2 C(s) + O2(g)                  CO(g) (b) Zn2+(aq) + H2S(g)               ZnS(s) + 2 H+(aq) (c) HCl(g) + H2O()                  H3O+(aq) + Cl–(aq) (d)H2(g) +  O2(g)                   H2O(g) 3.         Which of the following is more likely to precipitate the hydroxide ion? (a)...
The equilibrium constant, Kc, for the following reaction is 9.52×10-2 at 350 K. CH4 (g) +...
The equilibrium constant, Kc, for the following reaction is 9.52×10-2 at 350 K. CH4 (g) + CCl4 (g) <-> 2 CH2Cl2 (g) Calculate the equilibrium concentrations of reactants and product when 0.281 moles of CH4 and 0.281 moles of CCl4 are introduced into a 1.00 L vessel at 350 K. [CH4] = [CCl4] = [CH2Cl2] =
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.311 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI]= ___ M [H2]= ___M [I2]= ____M
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT