Question

A. The equilibrium constant, Kc, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g)<---> CH4(g)...

A. The equilibrium constant, Kc, for the following reaction is 10.5 at 350 K.

2CH2Cl2(g)<---> CH4(g) + CCl4(g)

Calculate the equilibrium concentrations of reactant and products when 0.346 moles of CH2Cl2 are introduced into a 1.00 L vessel at 350 K.

B. The equilibrium constant, Kc, for the following reaction is 9.52×10-2at 350 K.
CH4(g) + CCl4(g) <---> 2 CH2Cl2(g)
Calculate the equilibrium concentrations of reactants and product when 0.200 moles of CH4and 0.200 moles of CCl4are introduced into a 1.00 L vessel at 350 K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equilibrium constant, Kc, for the following reaction is 9.52×10-2 at 350 K. CH4 (g) +...
The equilibrium constant, Kc, for the following reaction is 9.52×10-2 at 350 K. CH4 (g) + CCl4 (g) <-> 2 CH2Cl2 (g) Calculate the equilibrium concentrations of reactants and product when 0.281 moles of CH4 and 0.281 moles of CCl4 are introduced into a 1.00 L vessel at 350 K. [CH4] = [CCl4] = [CH2Cl2] =
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) +...
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) + CCl4(g) An equilibrium mixture of the three gases in a 1.00 L flask at 350 K contains 5.19×10-2 M CH2Cl2, 0.168 M CH4 and 0.168 M CCl4. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.133 mol of CH4(g) is added to the flask? [CH2Cl2] =____ M [CH4] = ______M [CCl4] = ______M
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) +...
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) + CCl4(g) An equilibrium mixture of the three gases in a 1.00 L flask at 350 K contains 5.09E-2 M CH2Cl2, 0.165 M CH4 and 0.165 M CCl4. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.82E-2 mol of CH2Cl2(g) is added to the flask? [CH2Cl2] = M [CH4] = M [CCl4] = M The equilibrium constant, K,...
The equilibrium constant, Kp, for the following reaction is 10.5 at 350 K: 2CH2Cl2(g) CH4(g) +...
The equilibrium constant, Kp, for the following reaction is 10.5 at 350 K: 2CH2Cl2(g) CH4(g) + CCl4(g) Calculate the equilibrium partial pressures of all species when CH2Cl2(g) is introduced into an evacuated flask at a pressure of 0.856 atm at 350 K. PCH2Cl2 = ________ atm PCH4 = _________ atm PCCl4 = _______ atm
The equilibrium constant, Kp, for the following reaction is 9.52×10-2 at 350 K: CH4(g) + CCl4(g)...
The equilibrium constant, Kp, for the following reaction is 9.52×10-2 at 350 K: CH4(g) + CCl4(g) 2CH2Cl2(g) Calculate the equilibrium partial pressures of all species when CH4 and CCl4, each at an intitial partial pressure of 1.12 atm, are introduced into an evacuated vessel at 350 K. PCH4 = ________ atm PCCl4 = ________atm PCH2Cl2 = ________ atm
6A) Consider the following reaction: 2CH2Cl2(g) CH4(g) + CCl4(g) If 0.432 moles of CH2Cl2(g), 0.263 moles...
6A) Consider the following reaction: 2CH2Cl2(g) CH4(g) + CCl4(g) If 0.432 moles of CH2Cl2(g), 0.263 moles of CH4, and 0.590 moles of CCl4 are at equilibrium in a 17.7 L container at 576 K, the value of the equilibrium constant, Kc, is 6B)Consider the following reaction: COCl2(g) CO(g) + Cl2(g) If 3.59×10-3 moles of COCl2, 0.265 moles of CO, and 0.211 moles of Cl2 are at equilibrium in a 12.3 L container at 772 K, the value of the equilibrium...
The equilibrium constant, Kc, for the following reaction is 83.3 at 500 K. PCl3(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 83.3 at 500 K. PCl3(g) + Cl2(g) PCl5(g) Calculate the equilibrium concentrations of reactant and products when 0.269 moles of PCl3 and 0.269 moles of Cl2 are introduced into a 1.00 L vessel at 500 K. [PCl3] = M [Cl2] = M [PCl5] = M
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium concentrations of reactant and products when 0.276 moles of CO and 0.276 moles of Cl2 are introduced into a 1.00 L vessel at 600 K. [CO] = ___M [Cl2] = ___M [COCl2] = ___M
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium concentrations of reactant and products when 0.306 moles of CO and 0.306 moles of Cl2 are introduced into a 1.00 L vessel at 600 K. [CO] = M [Cl2] = M [COCl2] = M
The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) +...
The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.390 moles of PCl5(g) are introduced into a 1.00 L vessel at 500 K.