Consider an amphoteric hydroxide, M(OH)2(s), where M is a generic metal.
M(OH)2(s) <--> M2+(aq) + 2OH-(aq) Ksp= 3x10-16
M(OH)2(s) +2OH-(aq) <--> [M(OH)4]2-(aq) Kf= 0.05
Estimate the solubility of M(OH)2 in a solution buffered at pH = 7.0, 10.0, and 14.0.
the solubility for Mg(OH)2 where the pH is l0
Ksp = 3 x l0^-16 = (Mg++)(OH)^2 Mg(OH)2(s) at equilib Mg++(aq) + 2
OH-(aq)
If the pH is l0 then the pOH is 4 because pH + pOH = 14
and if the pOH is 4, then the (OH-) concentration =
antilog(-pOH)
antilog (-4) = l x l0^-4
Ksp = 3 x l0^-16 = (Mg++)(l x l0^-4)^2
(Mg++) = 3 x l0^-16 / 1 x l0^-8 = 3 x l0^-8 Moles per liter
solubility
Mg(OH)2 when pH is l0
At pH =7
the solubility for Mg(OH)2 where the pH is 7
Ksp = 3 x l0^-16 = (Mg++)(OH)^2 Mg(OH)2(s) at equilib Mg++(aq) + 2
OH-(aq)
If the pH is 7 then the pOH is 4 because pH + pOH = 14
and if the pOH is 7, then the (OH-) concentration =
antilog(-pOH)
antilog (-7) = l x l0^-7
Ksp = 3 x l0^-16 = (Mg++)(l x l0^-7)^2
(Mg++) = 3 x l0^-16 / 1 x l0^-8 = 3 x l0^-14 Moles per liter
solubility
Mg(OH)2 when pH is 7
Get Answers For Free
Most questions answered within 1 hours.