Question

show 1/(x^1/2) is not uniformly continuous on the interval (0,1).

show 1/(x^1/2) is not uniformly continuous on the interval (0,1).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the function f(x) = x2 is uniformly continuous on the interval (0,1).
Prove that the function f(x) = x2 is uniformly continuous on the interval (0,1).
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1,...
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1, 3].
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx
prove that this function is uniformly continuous on (0,1): f(x) = (x^3 - 1) / (x...
prove that this function is uniformly continuous on (0,1): f(x) = (x^3 - 1) / (x - 1)
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such...
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such that Xn-> 1 as n -> infinity. Prove that the sequence f(Xn) converges
Show that if f and g are uniformly continuous on some interval I then cf (for...
Show that if f and g are uniformly continuous on some interval I then cf (for all c ∈ R) and f − g are all uniformly continuous on I
1.) Given the continuous function ?-4x in the interval [0,1], determine the Fourier coefficients ??,?1,?2,?3. 2.)...
1.) Given the continuous function ?-4x in the interval [0,1], determine the Fourier coefficients ??,?1,?2,?3. 2.) Reconstruct an approximation to ?-4x by using the four coefficients found in part 1 (above). Plot the resulting function in the interval [0,1].
Show that f: R -> R, f(x) = x^2 + 2x is not uniformly continuous on...
Show that f: R -> R, f(x) = x^2 + 2x is not uniformly continuous on R.
Let f: [0,1] -> [0,1] be a continuous function. Show that there exists xsubzero [0,1] such...
Let f: [0,1] -> [0,1] be a continuous function. Show that there exists xsubzero [0,1] such that f(xsubzero)=xsubzero
Let X be a continuous random variable uniformly distributed on the interval (0,2). Find E( |X-μ|...
Let X be a continuous random variable uniformly distributed on the interval (0,2). Find E( |X-μ| ) A. 1/12 B. 1/4 C. 1/3 D. 1/2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT