Question

prove that this function is uniformly continuous on (0,1): f(x) = (x^3 - 1) / (x...

prove that this function is uniformly continuous on (0,1):

f(x) = (x^3 - 1) / (x - 1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the function f(x) = x2 is uniformly continuous on the interval (0,1).
Prove that the function f(x) = x2 is uniformly continuous on the interval (0,1).
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such...
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such that Xn-> 1 as n -> infinity. Prove that the sequence f(Xn) converges
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).
show 1/(x^1/2) is not uniformly continuous on the interval (0,1).
show 1/(x^1/2) is not uniformly continuous on the interval (0,1).
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1,...
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1, 3].
Let f be a continuous function on the real line. Suppose f is uniformly continuous on...
Let f be a continuous function on the real line. Suppose f is uniformly continuous on the set of all rationals. Prove that f is uniformly continuous on the real line.
Let f be a continuous function. Suppose theres a sequence (x_n) in [0,1] where lim f(x_n))=5....
Let f be a continuous function. Suppose theres a sequence (x_n) in [0,1] where lim f(x_n))=5. Prove there is a point x in [0,1] where f(x)=5.
Prove that if f(x) is a continuous function and f(x) is not zero then g(x) =...
Prove that if f(x) is a continuous function and f(x) is not zero then g(x) = 1/f(x) is a continuous function.   Use the epsilon-delta definition of continuity and please overexplain and check your work before answering.
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...