Question

Show that f: R -> R, f(x) = x^2 + 2x is not uniformly continuous on...

Show that f: R -> R, f(x) = x^2 + 2x is not uniformly continuous on R.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1,...
Show that the function f(x) = x^2 + 2 is uniformly continuous on the interval [-1, 3].
Show that if f and g are uniformly continuous on some interval I then cf (for...
Show that if f and g are uniformly continuous on some interval I then cf (for all c ∈ R) and f − g are all uniformly continuous on I
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
Use an epsilon-delta argument to show f(x) = 2x^2 - 1 is continuous at every a...
Use an epsilon-delta argument to show f(x) = 2x^2 - 1 is continuous at every a ∈ ℝ.
Let f:Ω-->R^m be uniformly continuous on Ω⊂R^n. Show if (Ω) is bounded, then f(Ω) is bounded.
Let f:Ω-->R^m be uniformly continuous on Ω⊂R^n. Show if (Ω) is bounded, then f(Ω) is bounded.
Show that the function f(x)=x2sin(x) is uniformly continuous on [0,b] for any constant b>0, but that...
Show that the function f(x)=x2sin(x) is uniformly continuous on [0,b] for any constant b>0, but that is not uniformly continuous on [0,infinity)
Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 3|x −...
Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 3|x − y|^{1/2} for all x, y ∈ R. Apply E − δ definition to show that f is uniformly continuous in R.
A function f : A −→ R is uniformly continuous and its domain A ⊂ R...
A function f : A −→ R is uniformly continuous and its domain A ⊂ R is bounded. Prove that f is a bounded function. Can this conclusion hold if we replace the "uniform continuity" by just "continuity"?
show 1/(x^1/2) is not uniformly continuous on the interval (0,1).
show 1/(x^1/2) is not uniformly continuous on the interval (0,1).
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx
prove that these functions are uniformly continuous on (0,1): 1. f(x)=sinx/x 2. f(x)=x^2logx