Question

If S is a set of 5 distinct vectors in R2, then some subset of S...

If S is a set of 5 distinct vectors in R2, then some subset of S is a basis for R2.

Homework Answers

Answer #1

This given statement need not be true.

Explanation -

As we know for Basis we need L.I. elements and Spanning set.

Now let a subset of S={(0,0) (1,1) (2,2) (3,3) (4,4)}

In R² with 5 distinct elements.

Now for Basis we want first - Linear independent elements but as we can see there are Linear dependent elements. So it is not Linear independent. So our first condition is failed. So it is need not be true .

Here is the solution of this problem. If you are satisfied plz do thumb's up.....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if a subset of a set of vectors is linearly dependent, then the entire...
Prove that if a subset of a set of vectors is linearly dependent, then the entire set is linearly dependent.
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where,...
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where, v1 = (1,2,-1,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,-6), v5 = (3,9,7,-6) Find a subset of S that is a basis for the span(S).
Prove that from any set A which contains 138 distinct integers, there exists a subset B...
Prove that from any set A which contains 138 distinct integers, there exists a subset B which contains at least 3 distinct integers and the sum of the elements in B is divisible by 46. Show all your steps
Let Sb be the standard basis for R^6 . Construct a set S, which is a...
Let Sb be the standard basis for R^6 . Construct a set S, which is a subset of R^6 so that S is a basis for R^6 but S does not contain any vectors that are in Sb or any multiple of any vectors that are in Sb. Justify your claim
Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y...
Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y ≥ 0. Let the vector space operations be the usual ones. Is this a vector space? Is it a subspace of R2? Exercise 9.1.12 Consider the vectors in R2,(x, y) such that xy = 0. Is this a subspace of R2? Is it a vector space? The addition and scalar multiplication are the usual operations.
For a nonempty subset S of a vector space V , define span(S) as the set...
For a nonempty subset S of a vector space V , define span(S) as the set of all linear combinations of vectors in S. (a) Prove that span(S) is a subspace of V . (b) Prove that span(S) is the intersection of all subspaces that contain S, and con- clude that span(S) is the smallest subspace containing S. Hint: let W be the intersection of all subspaces containing S and show W = span(S). (c) What is the smallest subspace...
Find a subset of the given vectors that form a basis for the space spanned by...
Find a subset of the given vectors that form a basis for the space spanned by the vectors. Verify that the vectors you chose form a basis by showing linear independence and span: v1 (1,3,-2), v2 (2,1,4), v3(3,-6,18), v4(0,1,-1), v5(-2,1-,-6)
Linear Algebra Conceptual Questions • If a subset of a vector space is NOT a subspace,...
Linear Algebra Conceptual Questions • If a subset of a vector space is NOT a subspace, what are the four things that could go wrong? How could you check to see which of these four properties aren’t true for the subset? • Is it possible for two distinct eigenvectors to correspond to the same eigenvalue? • Is it possible for two distinct eigenvalues to correspond to the same eigenvector? • What is the minimum number of vectors required take to...
Definition. Let S ⊂ V be a subset of a vector space. The span of S,...
Definition. Let S ⊂ V be a subset of a vector space. The span of S, span(S), is the set of all finite linear combinations of vectors in S. In set notation, span(S) = {v ∈ V : there exist v1, . . . , vk ∈ S and a1, . . . , ak ∈ F such that v = a1v1 + . . . + akvk} . Note that this generalizes the notion of the span of a...
Prove : If S is an infinite set then it has a subset A which is...
Prove : If S is an infinite set then it has a subset A which is not equal to S, but such that A ∼ S.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT