Question

Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y...

Exercise 9.1.11 Consider the set of all vectors in R2,(x, y) such that x + y ≥ 0. Let the vector space operations be the usual ones. Is this a vector space? Is it a subspace of R2?

Exercise 9.1.12 Consider the vectors in R2,(x, y) such that xy = 0. Is this a subspace of R2? Is it a vector space? The addition and scalar multiplication are the usual operations.

Homework Answers

Answer #1

Please feel free to ask for any query and rate positively.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = R, x + y = max( x , y ), cx=(c)(x) (usual multiplication.
Are the following vector space and why? 1.The set V of all ordered pairs (x, y)...
Are the following vector space and why? 1.The set V of all ordered pairs (x, y) with the addition of R2, but scalar multiplication a(x, y) = (x, y) for all a in R. 2. The set V of all 2 × 2 matrices whose entries sum to 0; operations of M22.
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial is vector space over the field R under usual polynomial addition and scalar multiplication. Further, find the basis for the space of polynomial p(x) of degree ≤ 3. Find a basis for the subspace with p(1) = 0.
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = R^2 , < X1 , X2 > + < Y1 , Y2 > = < X1 + X2 , Y1 +Y2> c< X1 , X2...
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of...
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of all dimension-2 vectors [x; y] whose entries x and y are odd integers. Axiom 1: The sum u + v is in V.
use the subspace theorem ( i) is it a non-empty space? ii) is it closed under...
use the subspace theorem ( i) is it a non-empty space? ii) is it closed under vector addition? iii)is it closed under scalar multiplication?) to decide whether the following is a real vector space with its usual operations: the set of all real polonomials of degree exactly n.
1. Consider the set U={(x,y) in R2| -1<x<1 and y=0}. Is U open in R2? Is...
1. Consider the set U={(x,y) in R2| -1<x<1 and y=0}. Is U open in R2? Is it open in R1? Is it open as a subspace of the disk D={(x,y) in R2 | x^2+y^2<1} ? 2. Is there any subset of the plane in which a single point set is open in the subspace topology?
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors...
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors of F(R, R) with the usual addition and scalar multiplication. Are these functions linearly independent? (b) Let S be a finite set of linearly independent vectors {u1, u2, · · · , un} over the field Z2. How many vectors are in Span(S)? (c) Is it possible to find three linearly dependent vectors in R^3 such that any two of the three are not...
Show that the set Vof all 3 x 3 matrices with distinct entries also combination of...
Show that the set Vof all 3 x 3 matrices with distinct entries also combination of positive and negative numbers is a vector space if vector addition is defined to be matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). • u ⊕ v = (u1 + v1 + 1, u2 + v2 + ) • ku = (ku1 + k − 1, ku2 + k − 1) Show that V is not a vector space.