Question

If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where,...

If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where, v1 = (1,2,-1,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,-6), v5 = (3,9,7,-6)

Find a subset of S that is a basis for the span(S).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0),...
Let S = {v1,v2,v3,v4,v5} where v1= (1,−1,2,4), v2 = (0,3,1,2), v3 = (3,0,7,14), v4 = (1,−1,2,0), v5 = (2,1,5,6). Find a subset of S that forms a basis for span(S).
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4...
If S=(v1,v2,v3,v4) is a linearly independent sequence of vectors in Rn then A) n = 4 B) The matrix ( v1 v2 v3 v4) has a unique pivot column. C) S is a basis for Span(v1,v2,v3,v4)
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4) (1)find a basis for span(S) (2)is the vector e1=(1,0,0,0) in...
Let v1=(0,1,2,3),v2=(1,0,-1,0),v3=(0,4,-1,2), and v4=(0,5,1,5). Let S=(v1,v2,v3,v4) (1)find a basis for span(S) (2)is the vector e1=(1,0,0,0) in the span of S? Why?
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4...
Let H=Span{v1,v2} and K=Span{v3,v4}, where v1,v2,v3,v4 are given below. v1 = [3 2 5], v2 =[4 2 6], v3 =[5 -1 1], v4 =[0 -21 -9] Then H and K are subspaces of R3 . In fact, H and K are planes in R3 through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. w = { _______ }
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose that A is a (3 × 4) matrix with the following properties: Av1 = 0, A(v1 + 2v4) = 0, Av2 =[ 1 1 1 ] T , Av3 = [ 0 −1 −4 ]T . Find a basis for N (A), and a basis for R(A). Fully justify your answer.
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix whose columns are ⃗v1,⃗v2,⃗v3,⃗v4. Suppose further that every subset Y ⊂ V of size two is linearly independent. Explain what form(s) rref(X), the reduced row echelon form of X, must take in this case. Hint: you won’t be able to pin down exact numbers for every entry of rref(X), but you might know things like whether the entry can be zero or not, etc.
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V , and if ⃗v4 ∈ V , then {⃗v1, ⃗v2, ⃗v3, ⃗v4} is also a linear dependent set of vectors in V . 2. Prove that if {⃗v1,⃗v2,...,⃗vr} is a linear dependent set of vectors in V, and if⃗ vr + 1 ,⃗vr+2,...,⃗vn ∈V, then {⃗v1,⃗v2,...,⃗vn} is also a linear dependent set of vectors in V.
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether...
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether w1, w2, w3 are linear independent or linear deppendent. B. Find the largest possible number of independent vectors among: v1=(1,-1,0,0), v2=(1,0,-1,0), v3=(1,0,0,-1), v4=(0,1,-1,0), v5=(0,1,0,-1), v6=(0,0,1,-1)
Determine all real numbers a for which the vectors v1 = (1,−1,1,a,2) v2 = (−1,0,0,1,0) v3...
Determine all real numbers a for which the vectors v1 = (1,−1,1,a,2) v2 = (−1,0,0,1,0) v3 = (1,2,a + 1,1,0) v4 = (2,0,a + 3,2a + 3,4) make a linearly independent set. For which values of a does the set contain at least three linearly independent vectors?
Find a subset of the given vectors that form a basis for the space spanned by...
Find a subset of the given vectors that form a basis for the space spanned by the vectors. Verify that the vectors you chose form a basis by showing linear independence and span: v1 (1,3,-2), v2 (2,1,4), v3(3,-6,18), v4(0,1,-1), v5(-2,1-,-6)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT