Question

Definition. Let S ⊂ V be a subset of a vector space. The span of S,...

Definition. Let S ⊂ V be a subset of a vector space. The span of S, span(S), is the set of all finite
linear combinations of vectors in S. In set notation,
span(S) = {v ∈ V : there exist v1, . . . , vk ∈ S and a1, . . . , ak ∈ F such that v = a1v1 + . . . + akvk} .
Note that this generalizes the notion of the span of a list of vectors as span(v1, . . . , vm) =
span({v1, . . . , vm}). By definition, we set span(∅) = {0}.

Question: Let U1, . . . , Um be subspaces of V . Show that span(U1 ∪ . . . ∪ Um) = U1 + . . . + Um.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For a nonempty subset S of a vector space V , define span(S) as the set...
For a nonempty subset S of a vector space V , define span(S) as the set of all linear combinations of vectors in S. (a) Prove that span(S) is a subspace of V . (b) Prove that span(S) is the intersection of all subspaces that contain S, and con- clude that span(S) is the smallest subspace containing S. Hint: let W be the intersection of all subspaces containing S and show W = span(S). (c) What is the smallest subspace...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
Let U1, U2 be subspaces of a vector space V. Prove that the union of U1...
Let U1, U2 be subspaces of a vector space V. Prove that the union of U1 and U2 is a subspace if and only if either U1 is a subset of U2 or U2 is a subset of U1.
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be...
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be a set of inner products on V that is (when viewed as a subset of B(V)) linearly independent. Prove that S must be finite e) Exhibit an infinite linearly independent set of inner products on R(x), the vector space of all polynomials with real coefficients.
For any subset S ⊂ V show that span(S) is the smallest subspace of V containing...
For any subset S ⊂ V show that span(S) is the smallest subspace of V containing S. (Hint: This is asking you to prove several things. Look over the proof that U1+. . .+Um is the smallest subspace containing U1, . . . , Um.)
Let S be a set in a vector space V and v any vector. Prove that...
Let S be a set in a vector space V and v any vector. Prove that span(S) = span(S ∪ {v}) if and only if v ∈ span(S).
Let V be a vector space and let U1, U2 be two subspaces of V ....
Let V be a vector space and let U1, U2 be two subspaces of V . Show that U1 ∩ U2 is a subspace of V . By giving an example, show that U1 ∪ U2 is in general not a subspace of V .
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that...
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that every vector w∈V can expressed in multiple ways as a linear combination of these generators.