Question

Prove in 3 different ways that a constant sequence converges

Prove in 3 different ways that a constant sequence converges

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if a sequence is a Cauchy sequence, then it converges.
Prove that if a sequence is a Cauchy sequence, then it converges.
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Using the definition of convergence of a sequence, prove that the sequence converges to the proposed...
Using the definition of convergence of a sequence, prove that the sequence converges to the proposed limit. lim (as n goes to infinity) 1/(n^2) = 0
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn...
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn >= 0 for all n, then the sequence (sqrt(sn)) converges to sqrt(s)
Prove: If x is a sequence of real numbers that converges to L, then any subsequence...
Prove: If x is a sequence of real numbers that converges to L, then any subsequence of x converges to L.
prove that a sequence converges if and only if all subsequences converge to the same limit
prove that a sequence converges if and only if all subsequences converge to the same limit
Prove that a sequence (un such that n>=1) absolutely converges if the limit as n approaches...
Prove that a sequence (un such that n>=1) absolutely converges if the limit as n approaches infinity of n2un=L>0
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.
Does a sequence which converges to 3 in such a way that the infinite series also...
Does a sequence which converges to 3 in such a way that the infinite series also converges to some limit exist?
Show that if sequence (an) converges, then all the rearrangement of (an) converges, and converge to...
Show that if sequence (an) converges, then all the rearrangement of (an) converges, and converge to the same limit